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Abstract

This work compares time, frequency and state-space analyses of pressure measurements from ¯uidized
beds. The experiments were carried out in a circulating ¯uidized bed, operated under ambient conditions
and under di�erent ¯uidization regimes. Interpretation of results in time domain, such as standard deviation
of the pressure ¯uctuations, may lead to erroneous conclusions about the ¯ow regime. The results from the
frequency domain (power spectra) and state-space analyses (correlation dimension, DML, and Kolmogorov
entropy, KML, together with a non-linearity test) of the pressure ¯uctuations are generally in agreement
and can be used complementary to each other. The power spectra can be divided into three regions, a
region corresponding to the macro-structure (due to the bubble ¯ow) and, at higher frequencies, two
regions representing ®ner structures that are not predominantly governed by the macro structure of the
¯ow. In all ¯uidization regimes, the measured pressure ¯uctuations exhibited an intermittent structure,
which is not revealed by power spectral analysis of the original signals. Fluctuations with pronounced
peaks in the power spectrum and in the auto-correlation function, corresponding to passage of single
bubbles through the bed, are non-linear with a low dimension �DML < 5:5). For DML < 5:5, the
Kolmogorov entropy is proportional to the amount of energy in the spectral range of the intermittent
structures observed, whereas for DML > 5:5 both KML (bits/cycle) and DML are insensitive to changes in
the distribution of energy in power spectra. Thus, the state-space analysis re¯ects that non-linearity is
mostly found in the macro-structure of the ¯ow. Fluidized bed time series treated in this work are
available at http://www.entek.chalmers.se/0®jo # 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

This work deals with analysis of time series of pressure signals measured in ¯uidized beds.
The aim is to compare available methods of time-series analysis by applying these on pressure
signals recorded at di�erent ¯uidization regimes. The paper is directed to readers interested in
hydrodynamics of two-phase ¯ow, especially ¯uidization, and methods of time-series analysis
are only brie¯y described. For details on these methods the references given should be
consulted.
Such a comparison of the characterization of hydrodynamics of ¯uidized beds is necessary,

since, in spite of numerous results available from investigations on the characterization of the
hydrodynamics of ¯uidized beds (summarized in the reviews of, e.g., Yerushami and Avidan,
1985; Bi and Fan, 1992), these results were obtained under di�erent conditions and are di�cult
to compare. One of the important reasons for the di�culty of interpretation of results lies in
the data analysis and, therefore, this subject in particular should be further studied.

1.1. Experimental methods and data analysis

Several methods have been proposed for characterization of ¯uidization regimes: visual
observations, study of time averaged entities such as the axial solids concentration pro®le and
interpretation of ¯uctuating signals from in-bed measurements.
For a qualitative classi®cation of regimes visual observation is important, but subjective in

nature; what is regarded to be a turbulent regime by some observers may be described as
bubbling by others. In quantitative measurements, frame by frame analysis of motion pictures
has been used to determine bubble and cluster velocities and bubble frequency (e.g., Newby
and Keairns, 1986; Yang et al., 1986). Although recent developments in video techniques make
such an analysis easier, it is still a tedious method.
Changes in the vertical distribution of time-averaged solids concentration (from pressure

drop measurements) have been used as an indirect measure of the bed dynamics. For example,
an S-shaped pro®le was related to the fast ¯uidization regime by Li and Kwauk (1980). A
change in conditions, which results in the disappearance of the S-shaped pro®le, is then
interpreted as a transition either to pneumatic transport (increase in velocity and/or decrease in
solids ¯ux), or to the bubbling regime (decrease in velocity and/or increase in solids ¯ux). A
change in solids concentration or bubble volume fraction with a change in the operating
condition has also been used to identify a regime transition (e.g., Canada et al., 1978; Avidan
and Yerushalmi, 1982). The solids concentration is then recorded in a certain point or in a
certain region of the bed. Methods based on the study of time averaged values of solids
concentration do not directly quantify the ¯ow dynamics and may lead to pitfalls.
A quantitative description of ¯ow regimes can be obtained from time-series analysis of

¯uctuating signals of in-bed measurements of pressure (gauge or di�erential pressure) or of
other signals, such as local solids concentration (from optical and capacitance probes). The key
to such a quanti®cation is an appropriate measurement method, as well as appropriate
methods of time-series analysis of the measured ¯uctuating signals. Time-series analysis for this
purpose operate in time domain, frequency domain or in state-space, the latter being used in
non-linear time-series analysis.
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1.1.1. Methods based on time domain analysis
The simplest analysis in time domain is to plot a sequence of data points of the measured

signal. This gives a qualitative description of the time scale and of the complexity of the ¯ow.
In most ¯uidized bed systems, the main frequencies are of the order of 1±5 Hz, and a sequence
of 10 s is suitable for this purpose.
The most common method in time domain is to study the amplitude of signals (usually

pressure), expressed as standard deviation or variance (viz., second order statistical moment).
The change in amplitude with operating conditions has been of interest for identi®cation of
transitions between regimes rather than quantifying the dynamics. This method has several
drawbacks, which are mainly linked to the problem of de®ning the operating condition. A
maximum in the standard deviation versus ¯uidization velocity is often employed as a criterion
for transition to turbulent ¯uidization (velocities of onset of transition, uc, and onset to
turbulent ¯uidization, uk� or for identi®cation of the transport velocity, utr (the velocity at
which all solids introduced into the riser are transported up through the riser in fully entrained
¯ow). Bi and Fan (1992) have summarized investigations, which were mainly based on this
method. Rhodes and Geldart (1986) questioned the above interpretation of the maximum in
standard deviation, and claimed that uk instead represents the velocity at which the bed height
becomes zero when the velocity is increased. From the comparison of the reported
observations Bi and Fan concluded that uk represents a transition, but only for Group A
particles �Ar < 125, ambient conditions, Ar is the Archimedes number), whereas for Group B
particles �Ar > 125� uk equals the transport velocity utr, i.e., in the latter case the conclusion is
similar to that of Rhodes and Geldart (although exact comparisons are di�cult to make since
determination/de®nition of utr varies somewhat between investigations).
Johnsson et al. (1995) showed that caution has to be taken when using the amplitude as a

method for detection of ¯uidization regimes. It was found, with Group B particles, that a
maximum in the curve of amplitude vs. velocity may indeed be a result of a transition to a
turbulent ¯uidization regime, but it could also be caused by a redistribution of bed material
from the riser side to the cyclone side, while the ¯uidization regime remains the same. This was
concluded from a comparison of power spectra of in-bed pressure signals at di�erent
¯uidization velocities in units of di�erent geometry; non-circulating as well as circulating beds.
Hence, the amplitude alone is not su�cient to quantify the bed dynamics and in some cases
can be misleading.
Another problem with de®ning uc and uk from the amplitude of bed-pressure ¯uctuations is

the dependence on measurement method. Johnsson et al. (1992) showed that if the amplitude
of measured di�erential in-bed pressure ¯uctuations was normalized with the bed pressure
drop, it was not possible to de®ne the transition velocities uc and uk under the conditions
studied; no maximum was found in spite of the existence of a maximum of the standard
deviation when plotted vs. velocity. A general discussion on the in¯uence of measurement
method was recently made by Bi and Grace (1995). They concluded that uc is a strong function
of measurement method (results obtained from absolute pressure ¯uctuations di�er from those
of di�erential pressure ¯uctuations), while uk depends on the con®guration of the solids recycle
system.
In summary, characterization of the regime by amplitude is, apart from not giving

information about the time scale, in¯uenced by the dynamics of the ¯ow, by the distribution of
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bed material in the system, and by changes in the average suspension density. Since the link
between these three e�ects is unknown, this measure of ¯uidized bed hydrodynamics should be
applied with great care.
Higher order moments, i.e., skewness (normalized third-order statistical moment), S, and

¯atness (normalized fourth-order statistical moment, also called kurtosis), F, which express
lack of symmetry �S � 0 for a Gaussian distribution) and sharpness in a probability
distribution �F � 3 for a Gaussian distribution), have been applied by a few authors for
determination of regime transitions, in particular, uc and/or uk: Lee and Kim (1988) calculated
values of skewness from time series of absolute pressure ¯uctuations. They observed a shift
from negative to positive skewness and a maximum in ¯atness with an increase in velocity, and
considered the zero point in skewness and the ¯atness-maximum to correspond to the
transition velocity uc: However, Bi and Grace (1995) compared regime transitions based on
skewness and amplitude from time series of absolute and di�erential pressure and optical
probes. Their transition results di�ered depending on whether they used skewness or
amplitude, and also depending on the type of measurement.
In intermittent time series, when the high-frequency activity comes in bursts separated by

relatively long quiescent periods (low amplitude ¯uctuations), the ¯atness can also be seen as
the ratio of the time spent under quiescent conditions to the time spent under active
conditions. A typical example is a signal from a hot-wire anemometer in a turbulent gas-¯ow
which, when high-pass ®ltered, is strongly intermittent (e.g., Frisch and Morf, 1981).
Intermittent behavior can be a characteristic of non-linear systems (Frisch and Morf, 1981;
Manneville, 1981; Greenside et al., 1982; Provenzale et al., 1993). It should, however, be noted
that highly intermittent systems give time series which, when not high-pass ®ltered, may yield a
¯atness, F, which is close to that of a Gaussian distribution, F13 (e.g., Batchelor, 1959), and
the intermittent structure is normally not revealed until high-pass ®ltering is performed.

1.1.2. Frequency domain analysis
Analysis of frequency distribution (e.g., by Fast Fourier Transform, FFT) has been applied

on time series of pressure and solids concentration from ¯uidized beds. In bubbling and
slugging beds, the dominant frequency in a power spectrum is that at which the bubbles/slugs
pass through the bed (Verloop and Heertjes, 1974; Broadhurst and Becker, 1976; Fan et al.,
1981; Satija and Fan, 1985; Sun et al., 1994). Regime transitions were identi®ed by a change in
frequency distribution in power spectra (Lirag and Littman, 1971; Canada et al., 1978; Satija
and Fan, 1985; Satija et al., 1985; Johnsson et al., 1995; Svensson et al., 1996a). The
interpretation of power spectra is subjective. What is regarded to be a peak for determination
of a dominant frequency may di�er between observers. The shape of a spectrum depends on
the number of samples, the sampling frequency and the number of spectra averaged; given a
certain number of samples, there is a trade-o� between the statistical signi®cance and the
frequency resolution of the spectrum.
Frequency spectra may give a quite di�erent picture from that of amplitude analysis.

Johnsson et al. (1995) studied regimes in ¯uidized-bed units of di�erent geometries. All units
gave a maximum in the amplitude of the pressure ¯uctuations. In the units where a transition
of regimes of ¯uidization actually took place, there was a pronounced change in the frequency
distribution over the transition region from the bubbling bed regime to much wider spectra in
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the turbulent regime. In the units which showed no transition, there was little change in the
frequency distribution during an increase in velocity. Instead, the maximum in amplitude was
due to redistribution of bed material from the bed to the freeboard and to the cyclone side.
An important application of frequency domain analysis is in validating the hydrodynamic

scaling relationships with respect to the dynamics of the bed. This was done either by
comparing dominant frequencies of a scaled model with those of the full-scale unit (Newby
and Keairns, 1986), or by comparing the frequency spectra in a certain range of frequencies
(Nicastro and Glicksman, 1984; Glicksman et al., 1993). However, extending the range of
frequencies studied far beyond the range corresponding to the bubble dynamics (as was done
by Glicksman et al., 1993) to include regions of low energy ¯uctuations, requires high accuracy
of the pressure transducer used, details given on the calculations of the spectrum and a suitable
representation of the spectrum (such as semi-logarithmic or logarithmic representation). If not,
spectra are di�cult to interpret. Most work, dealing with frequency domain analysis, identi®es
dominant frequencies and little information is available on the distribution of energy over a
wider range of frequencies.

1.1.3. State-space analysis
Two-phase ¯ow in ¯uidized bed systems is governed by non-linear relationships (equation of

motion for the gas and solid phases) and, accordingly, several authors (Daw and Halow, 1991;
van den Bleek and Schouten, 1993; Vander Stappen et al., 1993; Skrzycke et al., 1993; Hay et
al., 1995) found time series from pressure and voidage measurements in ¯uidized beds to
exhibit the characteristics of low-dimensional deterministic chaos. The fractal dimension in
state-space was found to be of a relatively low dimension, typically less than ®ve. Recently
developed non-linearity tests applied on bubbling ¯uidized bed data have con®rmed the data to
be non-linear (Vander Stappen, 1996). However, application of non-linear time-series (state-
space) analysis on experimental time series containing noise is not straightforward and the
analysis methods are still a subject of research. There are investigations which found ¯uidized
bed data to resemble noise rather than being non-linear of a low dimension. Tam and Devine
(1989) discussed the problem of handling noise in measured time series from ¯uidized beds.
When they applied state-space analysis on their data they did not observe any low-dimensional
attractor. Letaief et al. (1995) investigated a low velocity bubbling ¯uidized bed and found it to
have the characteristics of noise, similar to that of fractal Brownian motion. The two latter
investigations were limited to a narrow band of operational conditions (to velocities near
minimum ¯uidization velocity), and that may be the reason for their conclusions. Application
of state-space analysis together with a non-linearity test over a wide range of ¯uidization
regimes is lacking in literature.
All methods of non-linear time-series analysis are, in principle, based on the construction of

an attractor of the dynamic evolution of the system in state-space. The method of
reconstruction in state-space, known as `embedding', is theoretically (Takens, 1981) based on
the fact that all information needed to de®ne the state of the system exists in a time series of
one single measured parameter, such as the ¯uctuating pressure in ¯uidized beds. The most
common methods to characterize the attractor are the evaluation of the correlation dimension
and the (Kolmogorov) entropy (Grassberger and Procaccia, 1984) and/or determination of the
Lyapunov exponents (e.g., Eckmann et al., 1986; Abarbanel et al., 1990). The correlation
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dimension expresses the number of degrees of freedom of the system, whereas the entropy and
the Lyapunov exponents are measures of the predictability of the system and the sensitivity to
initial conditions. There are several text-books with descriptions of available methods for non-
linear time-series analysis (Moon, 1992; Argyris et al., 1994; Hilborn, 1994; Abarbanel, 1996;
Baker and Gollub, 1996). For ¯uidized bed systems, the correlation dimension and the
(Kolmogorov) entropy have been used (Daw and Halow, 1991; van den Bleek and Schouten,
1993; Schouten et al., 1996), whereas calculation of Lyapunov exponents is associated with
di�culties (Schouten et al., 1994c; Vander Stappen, 1996).

1.1.4. Comparison of frequency domain and state-space analysis
Both dynamic systems in chaotic motion and stochastic systems have a strong decay in auto-

correlation function with time lag (e.g., Argyris et al., 1994) and broad-banded power spectra
(e.g., Tennekes and Lumley, 1972; Abarbanel et al., 1993; Baker and Gollub, 1996). In some
cases, these spectra may contain distinct peaks corresponding to some characteristic frequency
of the system, such as a peak from an excitation (drive) frequency (Casdagli et al., 1992;
Moon, 1992; Baker and Gollub, 1996). The link between the shape (fall-o� with frequency, f )
of the power spectrum and the type of system (chaotic/deterministic or stochastic) on measured
time series may be used to characterize the system, since the fall-o� at high frequencies is
di�erent for the two types of system. Stochastic and multifractal systems (with wide range
scaling) give spectra P( f ), which fall-o� according to a power-law of the frequency, P�f �0f ÿa

(e.g., Sigeti and Horsthemke, 1987; Tessier et al., 1993). The power spectrum of systems which
exhibit deterministic chaos with a low number of modes should fall exponentially (i.e., faster
than a power law) with frequency, P�f �0exp�ÿf=m� (Frisch and Morf, 1981; Sigeti, 1995a,
1995b). This di�erence in fall-o� has been observed in model systems (Greenside et al., 1982;
Sigeti, 1995a, 1995b), as well as on experimental time series (Brandstater and Swinney, 1987;
Babloyantz and Destexhe, 1988; Philippou et al., 1991; el-Hamdi et al., 1993). Based on an
investigation on various modeled time series, Sigeti (1995b) suggests that the exponential decay
constant, m, being an inverse time scale, is an invariant of the dynamics of the system and is
unique to deterministic chaos. He argues that m should be related to the positive Lyapunov
exponents and found, for chaotic model equations, m to be roughly proportional to the sum of
the positive Lyapunov exponents. As a consequence of this result, the sum of the positive
Lyapunov exponents (which should then be equal to the Kolmogorov entropy) of experimental
systems would be possible to estimate from the power spectrum. Nowak et al. (1993), Ding
and Tam (1994), Ding (1997) analyze the fall-o� in power spectrum on time series measured in
¯uidized beds and Kikuchi et al. (1997) make a similar analysis on a three-phase reactor. The
authors consider an exponential fall-o� to be typical for a low-dimensional behavior, whereas a
power-law fall-o� is characteristic for either a stochastic process or high-dimensional chaos.
They did not, however, make any quanti®cation of the fall-o�, such as comparing the decay
constant with the Lyapunov exponents or entropy in line with the work of Sigeti.
The practicality of using power spectrum fall-o� to quantify the entropy or distinguish low-

dimensional non-linear dynamics from stochastic behavior is not resolved at present. In spite
of the impression that it is generally accepted that power spectra of time-series from model
systems exhibiting deterministic chaos decay exponentially (Sigeti, 1995a, 1995b), there are no
systematic studies on application of this di�erence to measured time series. Such a study may
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be di�cult since most real systems have many modes (many degrees of freedom) and noise is
present in the measurements. As for the non-linear state-space analysis, data sets with long
duration and with high resolution in amplitude and time domain are needed to verify such a
procedure. There also exist some examples in the literature which contradict the relevance of
such a division with respect to the characteristics of the fall-o� in power spectrum (Greenside,
1997). For example, Ahlers and Behringer (1978) found power-law fall-o� from heat transport
measurements on a Rayleigh±Bernard convection cell, a result which should not be due to
stochastic e�ects. Furthermore, numerical integration of a deterministic partial di�erential
equation, the Kuramoto±Sivashinksy equation, gives a solution with a power-law decay in the
power spectrum, although it turns into an exponential decay at high frequencies (Manneville,
1981).

1.2. Aim and outline of paper

Two-phase ¯ow in circulating ¯uidized bed (CFB) risers is complex, it depends on the
operational conditions, and it may di�er between di�erent types of risers and solids used.
Therefore, it is desirable to have reliable methods for an experimental mapping of the ¯ow.
Yet, these methods should be simple in order to facilitate measurements under industrial
conditions (at elevated temperature and pressure). Pressure measurements are simple, reliable
and possible to carry out under industrial conditions.
As indicated in the previous sections, the problem of generalization of available results lies

mainly in the interpretation of measurements. There is no systematic comparison available of
the outcome of di�erent methods of time-series analysis applied on two-phase ¯ow
measurements. The present work intends to compare the di�erent methods to evaluate pressure
¯uctuation measurements in a ¯uidized bed for characterization of the ¯uid-dynamics, such as
identi®cation of di�erent ¯uidization regimes. Video recordings, measurements of the vertical
solids concentration pro®le and net solids ¯ux together with the super®cial gas velocity de®ne
the operating conditions of the ¯uidized bed. Focus is on the data analysis rather than on the
regimes, and the experimental conditions given are only examples.
A comparison is made with a time series from a well-known low-dimensional (three modes)

chaotic model system (the Lorenz equations), and with a time series from measurements of
velocity ¯uctuations in turbulent gas-¯ow. The Lorenz equations (Lorenz, 1963) is a simpli®ed
model of atmospheric dynamics describing (with Navier±Stokes equations) a ¯uid-layer under
gravity, which is heated from below resulting in a temperature gradient across the layer. The
result of a su�ciently large temperature gradient across the layer is that warm air rises and
cool air falls. A vortex-like motion is obtained. The equations in the three dimensions x, y and
z are

_x � s�yÿ x�

_y � rxÿ yÿ xz

_z � ÿbz� xy �1�
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whose solution with s � 16, r � 45:92 and b � 4:0, gives a chaotic time series. In this work,
the x-component is chosen to exemplify the dynamics of a chaotic time series. The time series
with velocity ¯uctuations in turbulent gas-¯ow in a pipe was provided by Johansson (1997).
The measurements of velocity ¯uctuation, uÂ, in the ¯ow direction by a hot-wire anemometer,
were made in a wind-tunnel at a Reynolds number of about 60,000. Gas-phase turbulence
under these conditions is normally considered as a stochastic system (many modes).
The paper is organized as follows. Section 2 describes the experimental method, and the

methods of time-series analysis are brie¯y described in Section 3. Results and discussions are
given in Section 4. Firstly (Section 4.1), the methods of data analysis are applied on four well
established ¯uidized bed ¯ow conditions (time- series of pressure ¯uctuations available at
http://www.entek.chalmers.se/0 ®jo) with signi®cantly di�erent ¯ow structure (three types of
bubbling regimes and a case corresponding to transport conditions). Intermittent structures of
the pressure ¯uctuations are identi®ed and discussed in Section 4.2. In Section 4.3, the di�erent
time-series analysis methods are used to study the ¯uid-dynamics as operation (in this case gas
velocity) changes from non-circulating to circulating conditions. Based on the results from all
time series investigated, Section 4.4 focuses on a comparison between the frequency domain
and state-space analysis. The conclusions given in Section 5 are grouped into those of direct
implications for description of the ¯ow regimes studied (Section 5.1) and into more general
conclusions with respect to the comparison between frequency domain and state-space analysis
(Section 5.2).

2. Experiments

The experiments were carried out in a CFB-unit, shown in Fig. 1, operated under ambient
conditions. The riser has a cross-section of 0.12� 0.7 m and a total height of 8.5 m. The front
side is made of transparent perspex to facilitate visual observations and video recordings. The
air distributor was a perforated plate with 2 mm holes and 6.2% hole area having a pressure
drop similar to that of CFB boilers. To prevent particles from falling down through the plate
into the wind-box, the plate was covered with a ®ne-mesh net. For comparison, some runs at
low velocities were made with a high pressure-drop air distributor. Then the bottom side of the
air distributor was partly blocked by tape, resulting in about 0.4% free hole area. The bed
material was silica sand with an average particle size of 0.31 mm and a particle density of 2600
kg/m3, i.e., Group B particles. The particle size distribution is shown in Fig. 2.
A pneumatically controlled butter¯y valve in the down-comer, from the cyclone, measures

the net solids ¯ux, Gs: The valve plate is perforated and covered with a ®ne mesh net. When
the valve is closed, it acts as an air distributor on which a bubbling bed is formed. During the
closure of the valve, the pressure drop over the bubbling bed is recorded with a transducer
connected to two pressure taps, p1 and p2, as indicated in Fig. 1. The solids ¯ux, Gs can be
calculated as

Gs � 1

g

dp

dt

Ad

A
�2�

where dp=dt is the slope of a line ®tted (least square method) to the recorded pressure-drop
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data. A and Ad are the cross-section areas of the bed/riser and the cyclone down-comer. The

pressure transducers for the pressure drop measurements and for the solids ¯ux measurement
were recorded by an AD converter connected to a PC.

For qualitative interpretation of the ¯uidization regimes of the bottom bed and the splash
zone, video recordings were made with a Super VHS video system with a recording speed of 25
frames/s. A camera shutter speed (adjustable) of 1/250 of a second was su�cient to get distinct

single frame pictures.

Two sets of pressure measurements were carried out: pressure drop to determine the axial
solids concentration pro®le and pressure ¯uctuations for the time-series analysis.

Fig. 1. The cold CFB unit. The riser is 8.5 m tall and have a 0:70� 0:12 m cross-section. Two air distributors with

di�erent pressure drop were used. The pressure taps are indicated by x and the two pressure taps for solids ¯ux
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Pressure drop. Piezo-resistive pressure transducers were connected to pressure taps along the
riser height and the sampling frequency was 20 Hz during 5 min. To detect the strong gradient
in solids concentration in the lower part of the riser the taps are densely spaced in this region.
Pressure drop due to hold-up of the gas, frictional and acceleration e�ects of gas and particles
is neglected. Although the pressure drop due to acceleration of the bed particles �� Gs�uÿ ut�,
u is the super®cial gas velocity and ut is the terminal velocity) may give a signi®cant
contribution to the measured pressure drop at high circulation rates, Gs, it can be neglected
under the present (boiler) conditions for which Gs is less than 25 kg/m2 s (Johnsson and
Leckner, 1995).
Pressure ¯uctuations. The pressure ¯uctuations were recorded as gauge (single ended)

pressure through a 50 and 4 mm I.D. steel tube with a ®ne mesh net at the side facing of the
¯uidized bed. The transducer (Kistler Type 7261) has a response frequency greater than 1 kHz
and an adjustable range (charge ampli®er Type 5011A10) giving the optimum response for
each condition. The charge ampli®er acts as a high-pass ®lter with a ®lter frequency of 0.1 Hz
and only the ¯uctuating part of the signal was recorded. van Ommen et al. (1999) showed that
a model by Bergh and Tijdeman (1965) give good predictions for this type of transducer and
probe systems. The model predicts the ®rst resonance frequency to be 670 Hz and the
amplitude ratio at 200 Hz (Nyquist frequency in the present work) to be 1.11 and lower at
lower frequencies (e.g., 1.03 at 100 Hz). Thus, the results indicate that no signi®cant distortion
of the signal can be expected in the range of frequencies studied. The pressure transducer was
connected to a 16 bit data acquisition board (Difa ABP 200). The data recorded were stored
on a PC. The signals were low-pass (hardware) ®ltered at the Nyquist frequency. The sampling
frequency was 400 Hz for all ¯uctuating signals and 786,432 samples were taken,
corresponding to 33 min of total sampling time.
The CFB was operated with a constant total inventory of solids and with gas velocities

ranging from 0.6 to 5 m/s. As the velocity is increased, solids are transferred from the bottom

Fig. 2. Particle size distribution of the solids.
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bed to the splash- and transport zones resulting in a decrease in height of the bottom bed. In
most cases the in-bed measurements, which were taken at 0.2 m above the air distributor, were
within the bottom bed and high enough from the bottom of the bed not to be in¯uenced by
entrance e�ects from the air distributor. The bottom bed height, Hx, is de®ned as the part of
the pressure drop which falls on a straight line (Fig. 6), and not as the extrapolated bed height,
a method for determination of the bed height which is not valid at high velocities.

3. Time-series analysis

All analysis are made on time-series with data points x(n ), with n � 1,2,3, . . . ,N, measured at
equidistant time intervals, Dt, i.e., with a sampling frequency of fs � 1=Dt: N is the total
number of samples and x is the pressure signal. There are numerous text books which provide
details on time and frequency domain analysis, e.g., Bendat and Piersol (1971), Rabiner and
Gold (1975), Proakis and Manolakis (1989), Press et al. (1992). These methods are also used
for statistical description of turbulence (see Tennekes and Lumley, 1972).

3.1. Time domain analysis

The amplitude of the signal, x, is expressed by the standard deviation (square root of
second-order statistical moment):

s �
�������������������������������������������

1

Nÿ 1

XN
nÿ1
�x�n� ÿ �x�2

vuut , �3�

with the average,

�x � 1

N

XN
n�1

x�n�: �4�

The higher order statistical moments are expressed in a non-dimensional form (Tennekes and
Lumley, 1972) as the skewness (normalized third-order statistical moment)

S � 1

Ns3
XN
n�1
�x�n� ÿ �x�3 �5�

and the ¯atness (normalized fourth-order statistical moment)

F � 1

Ns4
XN
n�1
�x�n� ÿ �x�4: �6�

The skewness, the lack of symmetry in the probability distribution, is zero for a normal
distribution. The ¯atness is a measure of the sharpness of the distribution. It is 3 for normal,
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Gaussian distribution. For intermittent systems, the ¯atness can also be seen as the ratio of the
time spent under quiescent conditions to the time spent under active conditions.
The correlation between two points separated by a time lag, k times Dt, is expressed with the

auto-correlation function

cxx�k� �
XNÿjkjÿ1

n�0
�x�n� ÿ �x��x�nÿ k� ÿ �x� �7�

which, normalized with the value at zero lag, cxx�0�, becomes

Cxx�k� � cxx�k�
cxx�0� , �8�

i.e., ÿ1RCxxR1:

3.2. Frequency domain analysis

In ¯uidized beds, the major frequency content of pressure ¯uctuations is normally below 10
Hz. Thus, to determine dominant frequencies, sampling with 20 Hz is su�cient. For a power
spectrum with a frequency resolution of 0.05 Hz, 400 samples are required. This corresponds
to a sampling time of 20 s, which, however, is far too short to describe the spectrum with a
su�cient statistical signi®cance. The variance of such an estimation of the power spectrum is
large, of the order of the square of the power spectral density, and will not decrease with an
increased number of samples. This is the case, because a single power spectrum can be seen as
one sample in the frequency domain. In order to decrease the variance, the power spectrum is
estimated as an average of a number of sub-spectra, the number chosen to get a satisfactory
trade o� between frequency resolution and variance. Hence, the time series is divided into L
segments of individual length Ns which are represented as

xi�n� � x�n� iNs� n � 1,2, . . . ,Ns, i � 1,2, . . . ,L �9�
The power-spectrum estimate of each segment is

Pi
xx�f� �

1

NsU

������X
Ns

n�1
xi�n�w�n� exp� ÿ j2pfn�

������
2

, �10�

where U normalizes by a factor of the power in the window function, w�n�: Thus,

U � 1

Ns

XNs

n�1
w2�n�: �11�

The averaged power spectrum becomes

Pxx�f� � 1

L

XL
i�1

Pi
xx�f�: �12�
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Eqs. (9)±(12) comprise the Welch method of power spectrum estimation (Welch, 1967)
without overlap between data segments. The frequency resolution of the power spectrum is
Df � fs=Ns: The decrease in variance of the power spectrum is approximately proportional to
the number of spectra averaged (Bendat and Piersol, 1971), 0Lÿ1: A Hanning window is used
as window function, w�n� (see, e.g., Press et al., 1992). This window is a smooth one with a
continuous ®rst derivative, and both the window and its derivative are zero at the endpoints.
This is of importance when studying the characteristics of the spectrum at high frequencies,
since when the time series is multiplied by the window, the resulting series must be
continuously di�erentiable (Sigeti, 1995b, 1996).
In accordance with Parseval's theorem, the energy of the signal is conserved in the frequency

domain,

Ex � 1

N

XN
n�1
jx�n�j21 1

Nf

XNf

k�1
Pxx�f�, �13�

where Nf � fN=Df: Thus, the energy of the signal, Ex, which lies in a given frequency range is
obtained from summation of the power spectrum over the frequency range of interest.
Here, all sub-spectra are based on 8192 samples (120 s) yielding an average of 96 spectra.

With the 400 Hz sampling frequency, this gives power spectra with a frequency resolution of
0.048 Hz. As discussed above, this sampling frequency is far higher than what is needed (020
Hz) to resolve the major range of frequencies in ¯uidized beds.

3.3. State-space analysis

The theory of non-linear time series (chaos) analysis is still subject to research, and di�erent
algorithms and methods are available in literature. Most of the methods are based on the
principle of reconstruction of the data into an attractor in state-space. Details of the analysis
applied are given by van den Bleek and Schouten (1993) and Schouten et al. (1994a), (1994b)
and only a brief description is given here.
The reconstruction of the data into an attractor in state-space is based on the method

developed by Takens (1981). The reconstructed attractor, which, according to the theorem of
Takens, has the same properties as the true attractor, is described by two invariants, the
Kolmogorov entropy and the correlation dimension. Fig. 3 is a schematic illustration of a two-
dimensional reconstruction of an attractor. The reconstructed attractor consists of orbits of
points corresponding to di�erent state vectors, �X�i�, Fig. 3b. A state vector represents one
point on the orbit of the attractor and is reconstructed from the data points of the time series,
Fig. 3a. It is obtained by choosing a speci®c time delay, t, of equal sequential time steps
between the elements of the state vector and the number of elements, m, of the state vector.
Thus, as an example t � 1 and m � 3 give the state vectors, �X�1� � �x�1�,x�2�,x�3��T,
�X�2� � �x�2�,x�3�,x�4��T, �X�3� � �x�3�,x�4�,x�5��T, etc. In Fig. 3, m � 2 and the time delay is
equal to the time between the samples, i.e., t � 1 (corresponding to 1=fs). In general, the
reconstructed state vector is

�X�i� �
ÿ
x�i�,x�i� t�,x�i� 2t�, . . . ,x�i� �mÿ 1�t�

�T
: �14�
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The number of elements of the state vector, m, which equals the number of coordinates in
state-space, is called embedding dimension. If there is no delay (no data points skipped)
between successive vector elements, t is one (as in Fig. 3). T is the time window, i.e., the length
of the reconstructed vector, �X�i�, measured in units of time. This time window is a segment
�t,t� T� of the time series with length T � mtDt: There are no strict rules on the choice of the
embedding dimension, m, (e.g., Provenzale et al., 1994; Vander Stappen, 1996). Here, it is
calculated as the number of data points, N, divided by the number of cycles, i.e., m � N=Nc:
The number of cycles, Nc, is the number of times that the time series crosses its average value,
�x , divided by two. Thus, related to m, the average cycle frequency (the number of times per
time unit the signal crosses its average) is de®ned as

fc � Nc

NDt
: �15�

From practical experience (Vander Stappen, 1996; Schouten et al., 1994a) m should be in the
order of 50±200 points per cycle, which for a ¯uidized bed system, results (for t � 1� in
sampling frequencies of 50±200 times the cycle frequency, since fs � m=T: This, of course, also
determines the requirements on the response time of the measurement device, i.e., for pressure
measurements in a ¯uidized bed, the total response time of a pressure tap with tubing, pressure
transducer and AD converter should at least be less than 20 ms.
A strictly periodic time series has an average cycle frequency, which is identical to the peak

frequency of its power spectrum. Since the peak frequency in a power spectrum is sometimes
used to characterize the dynamics of ¯uidization (e.g., `dominant bed frequency', `fundamental

Fig. 3. A schematic illustration of a two-dimensional reconstruction of an attractor: (a) time series, x(i ); (b) two-

dimensional state-space. The reconstructed attractor consists of orbits of points corresponding of di�erent state
vectors, �X�i �, Fig. 3b.
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frequency of bed ¯uctuations') a comparison between this frequency and fc is of interest. A
considerable di�erence between these two frequencies is a ®rst indication that the peak
frequency alone is not representative for the dynamics of the signal, because then the signal
contains a considerable amount of energies at other frequencies than the peak frequency.
Since a state vector represents one point on the orbit of the attractor, the complete set of

state vectors constitutes a set of points on the orbits of the attractor in state-space. From
these, a corresponding set of distances between all pairs of points of neighboring orbits of the
attractor can then be derived. The dimension and entropy of the attractor are determined from
this set of distances.

3.3.1. Correlation dimension
A maximum likelihood estimation of the correlation dimension, DML, is used to describe the

spatial complexity of the attractor in state-space. It is estimated from the distribution of
distances between points on the attractor. A detailed description is given by Schouten et al.
(1994a). For a chaotic system, the attractor is called a strange attractor and it may have a non-
integer value of DML:
The method used to calculate DML is based on the correlation integral given by Grassberger

and Procaccia (1983a, 1983b)

C�l� � 1

N�Nÿ 1�
X
i 6�j

Y
ÿ
lÿ k �X�i� ÿ �X�j�k

�
, �16�

where Y is the Heaviside function. The correlation integral expresses the probability of ®nding
pairs of points � �X�i�, �X�j�� on the attractor within the speci®c distance, l. With D as the
correlation dimension, the correlation integral scales as C�l�1lD when l40 and N41: There
are several ways of estimating the correlation dimension from the correlation integral. Here, it
is obtained by applying the maximum likelihood estimation by Takens (1985). Thus, the
dimension estimate becomes

DML �
"
1

M

XM
i�1
ÿ ln�ri�

#ÿ1
�17�

where M is the sample size of interpoint normalized distances ri � li=l0: The distances, li, are
normalized with respect to a maximum scaling distance, l0, which is taken (Schouten et al.,
1994a) as the average absolute deviation

AAD � 1

N

XN
n�1
jx�n� ÿ �xj, �18�

a measure similar to the standard deviation in Eq. (3)).

3.3.2. Kolmogorov entropy
The Kolmogorov entropy, K, is a measure of the loss of information along the attractor. It

is de®ned from information theory (Grassberger, 1986), which states that the information
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needed to predict a system during the time interval �t1, t2], given the information I�t1� in bits at
time t1, is

I�t1, t2 � � I�t1 � � K�t2 ÿ t1� �19�
for K�t2 ÿ t1�41: Hence, for a fully predictable system K � 0 and for a stochastic system K is
in®nity. For a chaotic system, K is ®nite and positive. K can also be calculated by the
maximum likelihood method as described by Schouten et al. (1994b). For a measured time
series reconstructed into state-space, the separation of nearby points on di�erent orbits on the
attractor is assumed to be exponential (Grassberger and Procaccia, 1983a, 1983b, and the
separation can be expressed as an exponential distribution

C�b� � exp� ÿ Kb=fs� b � 1,2,3, . . . : �20�
The variable b is the number of sequential pairs of points on the attractor for which the
distance exceeds some maximum interpoint distance, l0: The maximum likelihood estimation of
the entropy, KML, becomes (Schouten et al., 1994b)

KML � ÿfsln
�
1ÿ 1

�b

�
�21�

with

�b � 1

M

XM
i�1

bi: �22�

The Kolmogorov entropy may be expressed in bits/cycle, in bits/time-unit (e.g., bits/s), or, in
numerical works, in bits/iteration (not considered here). In bits/cycle, it expresses the amount
of information lost under an average cycle �1=fc� in the time series, corresponding to an
average orbital period on the attractor. If KML is related to the average cycle time (seconds), it
is expressed in bits/s and then re¯ects the infomation lost in `real' time units. Thus, two
systems of di�erent time-scale may have the same entropy per cycle.

3.3.3. Non-linearity test
Not only low-dimensional chaos will generate ®nite dimensions but this could also result

from di�erent sorts of stochastic processes with long time correlation and power-law power
spectra, such as fractal Brownian motion (Provenzale et al., 1994 and references therein). In
addition to the non-linear analysis, we must therefore investigate if the time series is non-
linear. Various tests have been developed for this purpose (Kennel and Isabelle, 1992; Takens,
1993; Provenzale et al., 1994 and references therein). The tests are based on creating a
surrogate data series with the same power spectrum as the original signal but with no phase
correlation. This can be done by substituting the Fourier phases of the measured time series
with random and uniformly distributed phases. The surrogate time series, which yields the
same power spectrum, autocorrelation and statistics as the original time series, is obtained by
inverting the phase randomized Fourier spectrum. If the signal is non-linear, this procedure
will change the outcome of a non-linear analysis, such as the estimation of the correlation
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dimension described above. If, on the contrary, there is no di�erence in the outcome when
applied on the surrogate time series, the time series cannot be shown to be non-linear or
chaotic. Often, the outcome of the test is compared with a null hypotheses, i.e., the null
hypotheses is rejected if the outcome of the non-linear analysis is signi®cantly di�erent from
the original time series. Normally, the di�erence between the original time series and the
surrogate time series is expressed in number of standard deviations of the surrogate series,
called the Z-value.
The method used here is described by Schouten (1997). It is a combination of the methods

given by Kennel and Isabelle (1992) and Takens (1993). The test compares the original and
surrogate time series with respect to their short-time predictability in state-space. The
discriminating statistics for the test is similar to the concept of Kolmogorov entropy as
described above and by Schouten et al. (1994b). The surrogate time series has the same Fourier
spectrum and noise as the original time series. Here, a Zavg value is reported which has to be
less than ÿ3 to reject the null hypotheses at a 99% con®dence interval (Schouten, 1997).
Hence, the lower the value of Zavg the higher the signi®cance of rejecting the time series as
being generated by a linear stochastic process.

4. Results and discussion

The pressure drops of the air distributor and ¯uidization velocities employed in the present
work cover three bubbling regimes (cf. Svensson et al., 1996a). At velocities higher than the
transport velocity, utr, the riser is operated under transport conditions. Here, utr is de®ned as
the velocity above which there is no bottom bed, and all solids introduced to the riser are
transported in entrained ¯ow (except for some solids present in an acceleration one just above
the air distributor). The transport velocity depends on the con®guration and operation of the
system and on the amount and type of solids in the CFB-loop. At velocities lower than utr, the
unit was operated in the multiple, single and exploding bubble regimes. The multiple and single
bubble regimes are limited to non-circulating conditions (the net solids ¯ux Gs � 0), whereas
the exploding bubble regime can occur under non-circulating as well as circulating conditions
(Svensson et al., 1996b; Zijerveld et al., 1998). Under the present test conditions utr is about 4
m/s, and the transport conditions are associated with a solids ¯ux, Gs, which typically exceeds
20 kg/m2 s. The range of operation is summarized in Fig. 4.

4.1. Four di�erent ¯ow conditions

The focus is on the ¯ow in the bottom region of the riser. Under non-circulating conditions
all solids are, of course, located in this region, but also under circulating conditions and
velocities lower than utr the major part of the solids in the riser is found in the bottom bed.
Only for velocities exceeding utr, the solids concentration is fairly even and only slightly higher
in the lower section than in the upper part of the riser. Four conditions, two non-circulating
and two circulating are treated: the multiple bubble and the single bubble regimes, both at a
gas velocity of 0.6 m/s, the exploding bubble regime at 2.2 m/s at a low solids ¯ux under
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circulating conditions �Gs01 kg/m2 s, cf. Fig. 4), and transport conditions at 4.1 m/s �Gs � 25
kg/m2 s).

4.1.1. A qualitative picture of the ¯ow
The video frames of Fig. 5 give a qualitative picture of the bottom-bed ¯ow in the four

cases. The three bubbling regimes have similar bed heights but show strong di�erences in the
bubble behavior (Fig. 5a±c). The multiple bubble regime (Fig. 5a) occurs at low velocities and
a high air distributor pressure drop �u � 0:6 m/s, Dpd � 4200 Pa shown in the ®gure), and is a
well ¯uidized bubbling bed; a `normal' bubbling bed with a uniform bubble distribution. There
is a continuous passage of bubbles through the bed, in Fig. 5a, and several bubbles erupt
simultaneously at the surface of the bed. The pressure drop across the air distributor, Dpd, is of
the same order as the pressure drop across the bed, Dpx: The bubbles are much smaller than
the wide bed dimension (0.7 m) and a considerable number of bubbles are also smaller than
the narrow bed dimension (0.12 m). Therefore, more bubbles erupt at the surface of the bed
than seen from the front of the bed. The gas ¯ow through the bed appears to be constant in
time with the bubbles evenly distributed over the cross-section of the bed (Svensson et al.,
1996a).
Fig. 5b shows a bubble just before eruption, when the bed is operated in the single bubble

regime �u � 0:6 m/s, Dpd � 660 Pa). The pressure drop across the air distributor is considerably
lower than the pressure drop across the bed, but ful®lls some published criteria for the
minimum ratio of Dpd=Dpx needed for an even ¯uidization (e.g., Qureshi and Creasy, 1979),
but is too low with respect to other criteria (e.g. Zuiderweg, 1967). The video recording shows
an even ¯uidization in terms of symmetry; on a time average basis the center of the bubbles

Fig. 4. Solids ¯uxes, Gs, vs. velocity in the CFB unit of Fig. 1. The maximum and minimum solids ¯uxes were

obtained by control of the purge air to the inlet of the recycled solids. The terminal velocity of an average size bed
particle, ut, and the transport velocity, utr, are indicated.
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coincides with the center-line of the bed. However, there is a strong interaction with the wind-
box (Svensson et al., 1996a) and obviously the gas ¯ow cannot be continuous, since, after the
eruption of a bubble, the bed collapses to a state free of bubbles, lasting for a short time,
during which the velocity is not higher than at minimum ¯uidization. The latter can be
concluded from a comparison of the height of the collapsed bed, obtained from the video
recording, with the height of the static bed.

Large exploding bubbles occur (Fig. 5c) at a high gas velocity (but lower than utr� under
circulating conditions �u � 2:2 m/s, Dpx � 3300 Pa) with the same air distributor that gave the
single bubble regime at low velocities. Since the maximum bubble size is limited by the bed
height, these bubbles are similar in size to those of the single bubble regime and the average
voidage is not much higher than for the single bubble regime. Therefore, there is a substantial
through-¯ow of gas through the bubbles (cf. Johnsson et al., 1991) with high local gas
velocities as the bubbles explode at the surface of the bed. After an eruption of the bubble, the
bed collapses like in the single bubble regime. In the exploding bubble regime, there is a
substantial amount of solids in the splash zone in the form of clustered particles. These particle
agglomerates, are projected into the freeboard by the eruption of the bubbles and constitute
the main phase of the splash zone. A distinct bed surface is seen also at this high velocity,
which exceeds the terminal velocity of an average-size bed particle. Pronounced clustering leads
to a strong back-mixing in the splash zone.

Fig. 5d shows the lower bed section at a velocity �u � 4:1 m/s) above utr: Due to acceleration
e�ects, clustering phenomena and wall-layer back-mixing, there is a small dense region above
the air distributor also at velocities above utr. The ¯ow is characterized by clustered particles in

Fig. 5. Frames from video recordings of the lower part of the CFB operated in (a) the multiple bubble regime, (b)

the single bubble regime, (c) the exploding bubble regime, and (d) under transport conditions. The dark horizontal
part crossing the bed is a support beam for the perspex to withstand the forces from the bed-¯uctuations.
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strands, which are uniformly distributed over the cross-section of the riser. The average
voidage is considerably lower than under the bubbling conditions.
In summary, on a macro-scale, we observe two types of ¯ow conditions: a discontinuous and

a continuous ¯ow. In this sense, the single bubble and the exploding bubble regimes can be
characterized by a discontinuous gas ¯ow in time and space. The ¯ow characteristics of the
multiple bubble regime and the transport conditions are more continuous in nature with many
small bubbles (multiple bubble regime) or strands (transport conditions) in a uniform
distribution over the bed width, and the gas ¯ow is, on a macro-scale, continuous in time and
space (see also Svensson et al., 1996a).

4.1.2. Time averaged data
Table 1 summarizes the time averaged data of the four cases. The large di�erence in ¯ow

behavior of the multiple and single bubble regimes (Fig. 5a and b) is not seen in the time-
averaged pressure drop, Fig. 6. Thus, the average solids concentration, r, or voidage, e, Table
1, is similar in these two cases �r11300 kg/m3, e10:5). The similarity of the pressure pro®les
of Fig. 6 supports the prediction by the correlation of Qureshi and Creasy (1979) that the
Dpd=Dpx-ratio was su�cient for the bed to be completely ¯uidized. The di�erence in bed
height, Hx, (the dense bed is de®ned as the part of the pressure drop which falls on a straight
line in Fig. 6) is small. The multiple bubble regime gives somewhat higher values of Hx (=0.40
m) and bed voidage e (=0.51) than the single bubble regime �Hx � 0:37 m, e � 0:50). This is
expected, since smaller bubbles eject less solids into the splash zone and have a lower velocity
than the larger bubbles of the single bubble regime.
In the exploding bubble regime, the height, Hx, of the dense bed is about 0.3 m due to

transfer of solids from the bed to the splash and transport zones and to the cyclone side. The
average bed voidage is e10:58 and, thus, only slightly higher than in the two low-velocity
cases. The pressure pro®le shows a considerable amount of solids above the dense bed.
Under transport conditions, there is, except for the lowest 0.2 m, a more or less constant

decay in pressure over the entire riser height which yields only a weak decay in solids
concentration with height. The small bottom zone is not easily determined from the pressure
drop measurements. Furthermore, the high measured voidage �00:8� in combination with the
high solids recirculation �025 kg/m2 s) may result in a substantial contribution from

Table 1

Time averaged data for di�erent regimes. The Reynolds number is based on the bubble diameter, or typical distance
between strands in the case of transport conditions as obtained from the video recordings (cf. Fig. 5)

Regime condition u (m/s) Dp (Pa) Bottom bed

Hx (m) Dpx (Pa) e ReDb

Multiple bubble 0.6 5200 0.40 4960 0.51 4000
Single bubble 0.6 5340 0.37 4730 0.50 20,000
Exploding bubble 2.2 5445 0.3 3310 0.58 60,000

Tranport condition 4.1 3360 0 ± ± 30,000
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acceleration e�ects to the pressure drop and, consequently, the actual average voidage may be
even higher than 0.8 in the lowest section.
Except for the obvious fact that the pressure drop represents the distribution of solids in the

riser (Fig. 6), we cannot draw many conclusions on di�erences in regimes from the pressure
drop pro®les.

4.1.3. Time domain analysis
The ¯ow patterns in the single and multiple bubble regimes can be seen from in-bed pressure

signals measured at 0.2 m above the air distributor, Fig. 7. There are di�erences both in the
amplitude (standard deviation, s, Eq. (3)) and in the time behavior of the two signals. Table 2
summarizes the outcome of the time-series analysis. The multiple bubble regime has a lower
amplitude due to the smaller bubbles, s � 272 Pa, than the single bubble regime, s � 540 Pa.
The periodicity of the signal in the single bubble regime is not present in the multiple bubble
regime. The peak values of the ¯uctuations in the single bubble regime is about 2 kPa
increasing to 4 kPa in a 1.1 m/s Ð case not shown. This is of the same order as the time-
average total pressure drop over the bed (5 kPa, Fig. 6, Table 1), i.e., the large single bubbles
lift a major part of the bed mass above the location of the pressure tap, an e�ect con®rmed by
the video recordings (see also Fig. 5a). In this sense, the single bubble regime resembles a
slugging regime. Fig. 7c shows that the in-bed pressure ¯uctuations of the exploding bubbles
have an amplitude, s � 1690 Pa, which is greater than that of the single bubbles. The
exploding bubble regime is also governed by the dynamics of large bubbles, but the signal is
more complex than that of the single bubble regime, and no clear periodicity can be observed.
Under transport conditions, Fig. 7d, the signal remains complex, and, since there is no dense
bottom bed and less amount of solids in the riser, the amplitude is lower �s � 118 Pa) than in
the bubbling cases. It is di�cult to draw any conclusions from the amplitude as such, unless

Fig. 6. The pressure distribution in the riser, operated under the conditions shown in Fig. 5.
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one studies its changes during the variation of some operational parameter over a wide range,
such as s vs. velocity (see Section 4.3).
The skewness, S (Eq. (5)), and ¯atness, F (Eq. (6)), exhibit small deviations from the values

corresponding to a normal Gaussian distribution, S � 0 and F � 3, Table 2. Details in the
deviations can be seen from a normal probability plot, Fig. 8, in which a straight line
represents a Gaussian distribution and the curvature of deviations is emphasized by the
logarithmic scale. Fig. 8 shows that all time series studied follow a Gaussian distribution
within a certain range around the average value of the time series. The chaotic Lorenz system
is almost symmetric �S10� but ¯atter �F < 3� than a Gaussian distribution. The latter result
can be understood, since a substantial amount of the ¯uctuations of the Lorenz system does
not cross the average value of the time series (cf. Fig. 13a). The velocity ¯uctuations of the
turbulent pipe ¯ow give, as expected (e.g., Frisch and Morf, 1981), a ¯atness of F � 2:98 which
is near that of Gaussian noise �F � 3), Table 2 and Fig. 8e. When there is a deviation from a
Gaussian distribution it occurs at frequencies above the major frequencies, with the major
frequencies roughly corresponding to ¯uctuations with amplitudes large enough to cross the
average of the time series. It is, therefore, expected that the deviation mainly occurs at
frequencies of the order of or higher than the average cycle frequency, fc, and this region needs
to be studied in more detail.
Fig. 9a±d give the autocorrelation functions (Eqs. (7) and (8)), the resemblance of the signal

with itself, in the four cases. As expected, there is a fast decay in autocorrelation with time-lag
for the multiple bubble regime and for transport conditions (Fig. 9a and d), whereas the large
bubble systems, single and exploding bubble regimes, have a more periodic autocorrelation on

Fig. 7. Time sequences of the pressure ¯uctuations measured in (a) the multiple bubble regime, (b) the single bubble

regime, (c) the exploding bubble regime, and (d) under transport conditions (di�erent scale on vertical axis). The
measurements were made 0.2 m above the air distributor. Operating conditions according to Table 1.
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Table 2
Measures calculated by linear and non-linar analyses. Values in brackets cannot be compared with the corresponding ones of the ¯uidized bed
data, since they were obtained for a di�erent time scale/system. In positions marked (±), the value does not exist or has no sense in relation to the

other time series. The values of fall-o� are from least square power-law (power, a� and exponential (exp, 1=m� ®ts to the spectra. The frequency-
ranges of the fall-o� (4±10 and 20±100 Hz) were only used for the ¯udized bed data. For the Lorenz model, the whole range of frequencies was
used and the ranges related to the turbulent pipe-¯ow were determened accordidng to Fig. 12. The uncertainty of the values given is lower than

5%

Time domain Frequency domain State-space

System/regime s (Pa) S F fc (Hz) fd (Hz) Type of fall-o� 4±10 Hz Fall-o� Zavg DML KML (bits/cycle) KML (bits/s)

1=m 4±10Hz a 4±10Hz a 20±100Hz

Multiple bubble 272 0.0179 3.36 5.60 2.10 exponential or power 0.283 1.86 5.40 ÿ1.4 6.23 6.24 34.9

Single bubble 540 ÿ0.326 3.41 1.53 0.68 exponential or power 0.323 2.17 5.10 ÿ16.5 2.55 5.50 8.40

Exploding bubble 1690 0.586 2.92 2.64 1.25 exponential or power 0.439 2.94 4.24 ÿ2.7 5.87 6.53 17.2

Transport 118 1.03 4.50 4.00 0.98 exponential or power 0.312 2.08 4.04 ÿ2.5 6.16 5.70 22.8

Lorenz eqns, x(t ) ± 0.046 2.17 (0.488) ± exponential 1.23 entire range ± ± ÿ13.7 2.08 4.99 (2.44)

Turbulent pipe ¯ow, uÂ(t ) ± ÿ0.232 2.98 (ÿ56.0) ± power ± 1.64 20±100Hz 5.90 400±2000 Hz ÿ0.39 8.01 5.61 (314)
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Fig. 8. Normal probability plots with dashed lines corresponding to normal distributions (based on 8000 samples):
(a) multiple bubble regime, (b) the single bubble regime, (c) exploding bubble regime, (d) transport conditions, (e)

the x-component of the Lorenz equations, and (f) velocity ¯uctuations of turbulent pipe-¯ow. The dashed curves
correspond to a Gaussian distribution. Fluidized bed conditions according to Table 1.
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a scale which is similar to the bubble frequency (cf. below), and there seems to be a correlation
with respect to the bubble dynamics. The corresponding plots for the chaotic Lorenz system
and for the turbulent pipe-¯ow are given in Fig. 9e and f, both characterized by a fast decay,
reminding of the multiple bubble regime and transport conditions.

4.1.4. Frequency domain analysis
The di�erences in the dynamics of the four ¯uidization regimes are clearly seen in the

frequency domain, Fig. 10a±d. These plots show the ®rst 10 Hz (of 200 Hz measured) of the
power spectra (Eqs. (9) and (10)) with linear scales on both axes, a representation which is
suitable to illustrate dominant frequencies. The multiple bubble regime has a broad band of
frequencies between 0 and 10 Hz with a maximum at about 2.5±3 Hz (Fig. 10a). The pressure
¯uctuations are in¯uenced by a multitude of bubbles in the bed. In the single bubble regime,
the dominant frequency of about 0.7 Hz of the bed pressure ¯uctuations represents the passage
of the single bubbles (the second lower peak should be due to a period doubling). The strong
periodicity appears as a narrow peak in the power spectrum. The di�erence in amplitude (that
is in the energy of the signal) of the pressure ¯uctuations (cf. Fig. 7a and b) is seen on the
scales of the vertical axes of the power spectra in Fig. 10a and b.
The exploding bubble regime is characterized by large voids, but the ¯ow pattern is more

complex than that of the single bubble regime (Fig. 7b and c), and the dominant frequency is
not readily estimated from the time sequence. However, the power spectrum of Fig. 10c shows
a pronounced peak (at about 1.3 Hz) with only a minor part of the energy in the range of 2±
10 Hz. On one hand, the single and exploding bubble regimes appear di�erent in time domain
but similar in frequency domain. On the other hand, the time series of the exploding bubble
regime (Fig. 7c) and in the transport conditions (Fig. 7d) look similar in frequency-content, but
they have quite di�erent power spectra (Fig. 10c and d). Under transport conditions no
pronounced dominant frequency is measured, although the major energy is located below 4
Hz, Fig. 10d. Hence, a direct interpretation of the signal in time domain may lead to spurious
conclusions.
The strong periodicity of the single bubble regime can be illustrated by simply counting the

number of major peaks in the time series. The dominant frequency obtained in this way
becomes, in the 0.6 m/s case in Fig. 7b, 7 peaks/10 sc 0.7 Hz, and for another run at 1.1 m/s
(not shown): 10 peaks/10 sc 1 Hz. These values are very well in agreement with the power
spectra (0.68 Hz, Fig. 10b, and 0.91 Hz, respectively), which are based on the entire pressure
signal (1967 s). Together with the appearance of this almost perfect periodicity of the bubble
motion in this regime, we also observe a certain width of the peak in power spectra. The
relation between such a strong periodicity on a macro-scale and the ®ner ¯ow structures and
non-linear behavior will be discussed in Section 4.4.
As pointed out in Section 3.3, a di�erence between the dominant frequency of the spectrum,

fd, and the average cycle frequency, fc, indicates deviations from a perfect periodicity of the
macro-¯ow, since fc is based on the signal crossing its average. In Table 2 such a di�erence is
seen to be present in the multiple bubble regime, with its broad-banded power spectrum in the
low-frequency region, and also in the single and exploding bubble regimes, both having sharp
peaks in the power spectra. In fact, the ratio of fc to fd is similar for the three regimes
�2:1 < fc=fd < 2:7), which indicates that the ®ner structures have a signi®cance in all cases since
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Fig. 9. Autocorrelation function based on 4000 samples (10 s): (a) multiple bubble regime, (b) single bubble regime,
(c) exploding bubble regime, (d) transport conditions, (e) x-component of the Lorenz equations (arbitrary time

scale), and (f) velocity ¯uctuations of the turbulent pipe-¯ow. Fluidized bed conditions according to Table 1.
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fc exceeds the region of the dominant frequency. Under transport conditions there is no
meaning in de®ning a dominant frequency and fd given in Table 2 is simply the frequency
corresponding to the maximum amplitude in the power spectrum.
Finer structures in the frequency domain are shown in Figs. 11 and 12, presenting the power

spectra over a range of frequencies up to the Nyquist frequency of 200 Hz in Figs. 11a and 12
and up to 20 Hz in Fig. 11b and c. To study the fall-o� with frequency, the spectra are plotted
on a logarithmic vertical axis vs. the logarithm of frequency or vs. frequency on a linear scale.
A power-law fall-o�, Pxx0f ÿa, gives a straight line in a logarithmic plot and an exponential
fall-o�, Pxx0exp�ÿf=m�, gives a straight line in a semi-logarithmic plot.
In spite of the large di�erence between the multiple and single bubble regimes, judging from

the visual low-frequency macro-structure of the ¯ow, there is surprisingly little di�erence
between the power spectra above about 2±4 Hz, or above frequencies of the order of the
average cycle frequency, fc: The range 2±4 Hz seems to be a transition range in the cases
studied, and 4 Hz was selected as a starting point for the power-law and exponential ®ts.
Above 4 Hz both spectra of Fig. 11 can be divided into two regions: a Region 2 between 4 Hz
to about 10 Hz which can be ®tted as either power-law (Fig. 11a and b) or exponential fall-o�
(Fig. 11c) with about equal accuracy, with a around 2 (or 1=m around 0.3); and a Region 3
from about 20 Hz up to the Nyquist frequency (200 Hz) with a steeper power-law fall-o� (Fig.
11a), with a around 5, Table 2. The fall-o� in Region 3 was determined from 20 Hz to 100 Hz,
the latter value being below the resonance frequency of the pressure measurement set-up
(>120 Hz, cf. Section 2). Fig. 12 shows basically the same pattern in the exploding bubble

Fig. 10. Power spectra of: (a) multiple bubble regime, (b) single bubble regime, (c) exploding bubble rgime, and (d)
transport conditions. The spectra, which are zoom-ins of the ®rst 10 Hz, are averages of 96 sub-spectra, each

cosisting of 8192 samples (corresponding to 120 s of measurement time). Operating conditions according to
Table 1.
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Fig. 11. Power spectra of Fig. 10a and b (multiple and single bubble regimes) plotted on logarithmic (a, b) and
semi-logarithmic scales (c). The solid lines are power-law (b) and exponential (c) ®ts in the range 4±10 Hz and the
dashed lines (a) are a power-law ®ts from 20 to 100 Hz.
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regime (Fig. 12a) and under transport condition (Fig. 12b); the spectra can be divided into
three regions. The fall-o� in Region 2 of the exploding bubble regime is somewhat steeper than
for the other cases (Table 2), and Region 3 is less steep with a14: As is clear from Figs. 11a,
12a and b, Region 3 cannot be ®tted exponentially.
The possibility of ®tting Region 2 both as power-law and exponentially may be partly due to

the limited range of frequencies covered by this region which, however, contains a substantial
amount of the energy of the signal. At this stage, it is premature to draw any conclusion about
the system being (intermediately) chaotic based on the ®ts (cf. Nowak et al., 1993; Ding and
Tam, 1994).
Fig. 12c and d present power spectra of the x-component of the chaotic Lorenz system (Eq.

(1)) and of the measured velocity ¯uctuations, �u�t�, of the turbulent pipe-¯ow. As expected
(Frisch and Morf, 1981; Greenside et al., 1982; Sigeti, 1995a, 1995b), the spectrum of the
Lorenz equations falls exponentially over the whole frequency range (the spectrum exhibit a
straight line in a semi-logarithmic plot) and a power-law ®t is not adequate as indicated by the

Fig. 12. The power spectrum plotted on logarithmic scales for: (a) the exploding bubble regime, (b) transport
conditions, (c) the x-component of the Lorenz equations (Eq. (1) with the frequency scale arbitrarily chosen), and

(d) velocity ¯uctuations of turbulent pipe-¯ow.
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curvature obtained in Fig. 12c. From the power spectrum of the velocity ¯uctuations in the
turbulent pipe-¯ow (Fig. 12d), we recognize the well-known Kolmogorov universal scaling law
of the inertial sub-range (cf. Monin and Yaglom, 1975), corresponding to energy cascading,
which on dimensional grounds can be shown to follow a power-law fall-o� �Pxx0f ÿa� with
a � 5=3 � 1:66: There are numerous experiments con®rming this fall-o� for a vast range of
Reynolds number in di�erent applications (Saddoughi and Veeravalli, 1994). The
corresponding fall-o� in the spectrum of the pressure ®eld of gas-¯ow turbulence, obtained on
dimensional grounds (Monin and Yaglom, 1975; George et al., 1984 and references therein), is
a � 7=312:33, a value which has been con®rmed experimentally from pressure spectra in
turbulent free shear ¯ows (George et al., 1984 and references therein) and in turbulent wall-
layers (Schewe, 1983; Farabee and Casarella, 1991). At higher frequencies, in the dissipation
region, the power spectrum of the velocity ¯uctuations of the turbulent pipe-¯ow falls steeper
than with a � 5=3 (cf. Monin and Yaglom, 1975). Exponential ®ts are not adequate, although
the transition between the two regions can be ®tted exponentially (Fig. 12d).
Sigeti (1995b) compares fall-o� for di�erent chaotic model systems, including the Lorenz

model. Most of these model systems have, like the Lorenz model, a steeper fall-o� than the
¯uidized bed data. However, chaotic model systems with a higher number of modes can also
have a less steep, but still exponential, fall-o�. The fourth-variable model given by Lorenz
(1984), which, with the parameter studied by Sigeti, has one positive Lyapunov exponent, gives
an exponential fall-o� with 1=m � 0:326, a value which is similar to the ¯uidized bed data of
Table 2, especially when compared with 1=m � 0:323 of the single bubble regime. In summary,
it seems as if the fall-o� in power spectrum of Region 2 is in-between what has been observed
for chaotic model systems and the fall-o� of the inertial sub-range of velocity spectra in
turbulent ¯ows. However, Region 2 covers a limited range of frequencies, and the comparison
with literature data from model systems becomes di�cult. The comparison has to be supported
by comparisons made with other methods of time- series analysis. This is the case since the
di�erences between the underlying mechanisms of the dynamics of the Lorenz model, the
velocity ¯uctuations of the turbulent ¯ow, and the pressure ¯uctuations of the ¯uidized bed,
are unknown.

4.1.5. State-space analysis
Table 2 gives the results of the state-space analysis �DML and KML� and the non-linearity test
�Zavg� for the four ¯ow conditions, the Lorenz model and the turbulent pipe-¯ow. The non-
linearity test shows that the single bubble regime is non-linear with a value of Zavg, which is
similar to that of the Lorenz model. The other cases have values of Zavg exceeding ÿ3, and
cannot be distinguished from a linear stochastic system. This does not mean that they
necessarily are linear stochastic, but the outcome of the state-space analysis cannot be directly
related to the presence of chaos. The general observation that non-linear (chaotic) systems have
broad-banded power spectra (e.g., Moon, 1992; Abarbanel et al., 1993) seems not to be
applicable to the present type of ¯uidized bed data. This is because the frequency range
measured covers both macro-¯uctuations and ®ner structures, and the latter are not revealed
on a linear representation such as given in Fig. 10. Although the character of the fall-o� at
higher frequencies (Region 2) is similar to what has been observed for various non-linear and
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chaotic systems, at the present stage of knowledge the fall-o� cannot be used to quantify the
system as being non-linear.

The maximum likelihood estimations of the correlation dimension, DML, for the ¯uidized
bed data are in-between the values of the Lorenz model �DML � 2:08� and the turbulent pipe-
¯ow �DML � 8:01), ranging from 2.55±6.23. This is in line with the results of the fall-o� in
power spectrum: the ¯uidized bed data have a fall-o� between the chaotic model and the
turbulent pipe-¯ow, Table 2. The value of DML of the single bubble regime �DML � 2:55� is of
the same order as that of the Lorenz model �DML � 2:08). Note also the similarity in the result
of the non-linearity test �Zavg).

The dimensions of the ¯uidized bed data of this work are similar to those presented in
literature, which are about 2 for low velocity slugging conditions, around 4 for bubbling
conditions and up to 6 for higher velocities under turbulent or turbulent like conditions (van
den Bleek and Schouten, 1993; Vander Stappen et al., 1993; Hay et al., 1995; Vander Stappen,
1996). Thus, low velocities with well-de®ned voids passing the bed, such as the single bubble
regime of this work and the slugging regime (Vander Stappen, 1996), yield low dimensions
�DML values of about 2 to 3) while the more complex macro-structure of the multiple bubble,
transport and turbulent regimes results in higher dimensions, up to about 6. The conclusion is:
the less complex the macro-¯ow, the lower the dimension. All values reported are between
those of the chaotic Lorenz model and those of the turbulent pipe-¯ow.

Table 2 contains Kolmogorov entropy, KML, expressed in bits/cycle as well as in bits/s. The
di�erence in entropy per cycle, KML (bits/cycle), is rather small and cannot directly be related
to the complexity of the ¯ow, like the dimension. This could be expected, since with complexity
of the ¯ow we mean the macro-structure. The average cycle frequency depends on the macro-
structure of the ¯ow. The more complex the ¯ow, the higher the average cycle frequency and
the shorter the average cycle time. The power spectra (Figs. 11 and 12) and Table 2 show that
the ®ne structures of the ¯ow (Regions 2 and 3 in the power spectra) occur for time scales
shorter than the average cycle time (at f > 4 Hz). When expressed in bits/s the Kolmogorov
entropy is directly linked to the time scale of the system, and the time scale of the macro-
structure (Region 1 of spectra) will in¯uence the result. Thus, just as in the case of the
dimension: the more complex the ¯ow, the higher KML when expressed in bits/s. Note that, in
spite of Zavg > ÿ3 in the more complex cases, these may also be non-linear, although this
cannot be shown.

The Kolmogorov entropy shows a tendency to be lower in cases with less complex macro-
¯ow. In the slugging regime, Vander Stappen et al. (1993) and Vander Stappen (1996) reported
KML of around 4 bits/cycle, whereas for bubbling conditions the values are around 5 (van den
Bleek and Schouten, 1993; Vander Stappen et al., 1993; Vander Stappen, 1996). The transition
from a ®xed bed to a bubbling regime with an increase in ¯uidization velocity was re¯ected in
a corresponding transition in the values of KML (bits/cycle). When expressed in bits/s, KML

shows a clear dependence on the macro-structure of the ¯ow and in this form it has been
utilized to explore ¯uidization regimes (e.g., Vander Stappen et al., 1993; Zijerveld et al.,
1997a; 1998). The Kolmogorov entropy expressed in bits/second incorporates both the
information lost during an average time-cycle and the information loss in real time. Thus, if
the entropy in bits/cycle remains constant, a change in entropy when expressed in bits/s may
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not, as mentioned in Section 3.3, correspond to a fundamental change in the character of the
time series. Section 4.3 will discuss this in more detail.

4.2. Intermittent structures

Chaotic systems have a strongly intermittent structure, which, in time domain, is only
revealed by high-pass ®ltering of the time series representing the system (e.g., Greenside et al.,
1982). Fig. 13 exempli®es high-pass ®ltered time series of the pressure ¯uctuations. Again, the
time series of the Lorenz system and of the velocity ¯uctuations in the turbulent pipe ¯ow are
included for comparison. Intermittent time series have quiescent periods with occasional bursts
in the amplitude. In this sense, there is a strong similarity between the Lorenz equations and
the single bubble regime with a pronounced intermittency in both cases (Fig. 13a and b)
whereas the time series from the transport conditions resembles the turbulent pipe ¯ow, both
with a similar intermittent structure (Fig. 13c and d) which is not as clear-cut as those of the
Lorenz model and the single bubble regime.
Flatness, F (Eq. (6)), can be used as a measure of intermittency. Fig. 14a and b give F for

the six time series treated, high-pass ®ltered with di�erent ®lter-frequencies. A base level of 3,
which corresponds to Gaussian white noise, is indicated in the ®gures by a horizontal dashed
line. The F-values of the signals listed in Table 2 correspond to `zero' ®lter frequency (no
®ltering, other than that during measurements for removing the average of the signals) in Fig.
14. Fig. 14a shows ¯atness vs. ®lter-frequency for the turbulent pipe-¯ow data and for the
Lorenz model. As expected (see Kuo and Corrsin, 1971; Frisch and Morf, 1981), the ¯atness of
the velocity ¯uctuations of the turbulent pipe-¯ow increases throughout the inertial sub-range
up into the dissipation range and then decreases due to the in¯uence of measurement noise.
The ¯atness of the chaotic Lorenz system (Fig. 14a) shows a continuous increase with ®lter
frequency and, eventually, at high ®lter frequencies F becomes very large, values up to 1000
were calculated. Similar results were reported by Greenside et al. (1982). It is important to note
that high-pass ®ltering of a stochastic model system (viz., the Langevin equation) with a power
law spectrum �a � 4� was shown by Greenside et al. to approach a ¯atness of 3 with increased
®lter frequency.
Fig. 14b shows that high-pass ®ltering of the ¯uidized bed data strongly increases the

¯atness with increased ®lter frequency, indicating a strong intermittency. In the multiple
bubble regime, the increase in F with ®lter frequency is less steep and passes a maximum
(the entire decrease is not shown in Fig. 14b), a result which resembles that of the
turbulent velocity ¯uctuations of the pipe-¯ow (Fig. 14a). The single bubble regime gives
large values of F (up to 1000) as the ®lter frequency is increased, similar to the chaotic
Lorenz system. The ¯atness of the time series of the exploding bubble regime also
approaches large values with an increase in ®lter frequency, but not as large as in the
single bubble regime. Except for the multiple bubble regime, there is a strong
intermittency already in Region 2 of the power spectrum.
The time-series analysis methods employed, roughly put the four signi®cantly di�erent

¯uidization modes in-between the chaotic Lorenz system and the turbulent pipe ¯ow. In
spite of the periodic-like behavior on a macro-scale of two of the time series (the single
and exploding bubble regimes), the pronounced intermittent structure shown to occur at
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Fig. 13. Examples of high-pass ®ltered time sequences. The time scale of Figure a is arbitrarily chosen (1000 points/
10 s).
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Fig. 14. Flatness, F vs. high-pass ®lter frequency for: (a) the x-component of the Lorenz equations and the turbulent

velocity ¯uctuations, and (b) the four ¯uidiization regimes studied. Fluidized bed conditions according to Table 1.
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higher frequencies indicates that non-linearities and chaos may be present in these cases.
The intermittency at higher frequencies corresponding to Region 2 is similar to what was
observed in the fall-o� region of turbulent velocity and pressure spectra.
The present results give us no direct information on the physics behind the measured

pressure ¯uctuations at higher frequencies (Regions 2 and 3). However, there is an analogy
between features observed in the pressure spectra of the two-phase ¯ow and from those of
turbulent one-phase ¯ow. Thus, some factors make it tempting to speculate on the presence of
large scale ¯uctuations with characteristics similar to the dynamics of gas-¯ow turbulence, i.e.,
energy cascading starting at time and length-scales corresponding to the frequency and size of
the bubbles:

1. The presence of intermittency at high frequencies.
2. The high Reynolds numbers of the gas ¯ow. This (Re at least 100, Tennekes and Lumley,

1972) is a prerequisite for local isotropy (similarity at small scales), which results in the
above-mentioned power-law fall-o� in velocity and pressure spectra. The characteristic
length-scale of the ¯ow in the ¯uidized bed is not known with certainty. Under the
assumption that the gas ¯ow within and through the bubbles (or between the strands in case
of no bottom bed) is the major contribution to the large scale velocity ¯uctuations in the
gas ¯ow, thus assumed to generate large scale vortices, a Reynolds number based on the
bubble diameter can be de®ned, ReDb

� uDbr=m (where r and m represent density and
viscosity of the gas). This ReDb

ranges from 4000 to 60,000 in the four cases given in Table
1, and satis®es the criterion given by Tennekes and Lumley. The gas velocity through the
bubble/between strands is taken as the super®cial gas velocity, u. It is likely that this velocity
is underestimated and, thus, the estimations of the ReDb

-values are conservative.
3. Previous studies have shown pronounced ¯uctuations in gas velocity above the surface of

¯uidized beds (Pemberton and Davidson, 1984 and references therein). By using hot wire
anemometry, Pemberton and Davidson measured turbulent velocity ¯uctuations of the same
order as the mean ¯uidizing velocity. The irregularity of the ¯uctuations in gas-¯ow was due
to the eruption of the bubbles at the bed surface, forming ¯ow structures which the authors
named `ghost bubbles'.

4. Tamarin and Livshits (1977) and Livshits and Tamarin (1980) performed direct
measurements of solids and gas velocity ¯uctuations in a ¯uidized bed and the spectra of
these measurements show a fall-o� which is similar to turbulent one-phase ¯ow, with the
fall-o� independent of the macro structure of the ¯ow. They explained this with a gradual
transfer of energy from large to small vortices which eventually dissipates at scales
comparable with the particle diameter. It should be pointed out that the turbulent energy
cascading in single phase ¯ow for Reynolds numbers and characteristic lengths similar to
those given above, occurs at much smaller scales (higher frequencies) and so does turbulence
due to interaction of gas and particles in dilute ¯ow (e.g., Stock, 1995).

The question, which remains to be answered, is if the physics behind the large scale
¯uctuations of Regions 2 and 3 is similar to turbulence as suggested by Tamarin and Livshits.
Further measurements are required to answer this question.
The transitions between the regimes are continuous, and it is of interest to see the outcome

of the time-series analysis from a continuous change in the operating conditions. This is
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performed in the next section, where the CFB-unit is operated over a wide range of ¯uidization
velocities, covering the single and exploding bubble regimes and transport conditions.

4.3. Single bubble regime to transport conditions

Fig. 15 summarizes the results of the time-series analysis over the entire range of gas
velocities studied. Evaluation of video recordings con®rms the amplitude of the ¯uctuations,
Fig. 15a, to be strongly dependent on the size of the bubbles. In the single bubble regime, the
amplitude (standard deviation) goes through a maximum when a major part of the bed is lifted
by the bubble to a location above the 0.2 m pressure tap. Fig. 16 shows that within the single
and exploding bubble regimes, there is an increase in the average voidage, e, of the bottom bed
together with a decrease in bottom bed height, Hx: In the exploding bubble regime, the e�ect
of bubbles lifting the bed is less signi®cant or, at high velocities, not observed at all. Since the
maximum bubble size is limited by the bed height, the small reduction in bed height leads to
somewhat smaller exploding bubbles and to lower amplitudes. The decrease in average solids
concentration with an increase in velocity should contribute to the smaller amplitude. On the
other hand, the velocity of the gas passing through the bubbles increases substantially, and this
makes the ¯ow pattern more complex than at lower velocities, and a splash zone forms above
the bed. The moderate increase in voidage in the bed during an increase of gas velocity means
that almost the entire excess gas ¯ow passes the bed as through-¯ow through the exploding
bubbles (Johnsson et al., 1991; Zijerveld et al., 1997b). It is not possible to attribute the
decrease in amplitude of the ¯uctuations to either the decrease in solids concentration and bed
height or to a change in the dynamics. Under transport conditions the amplitude is low.
Skewness, S, and ¯atness, F, are not included in Fig. 15, since they are similar to those of a

Gaussian distribution when calculated from the un®ltered signals (Table 2). Hence, S and F
provide no useful information on the ¯ow regimes.
Fig. 15b compares the dominant frequency of the power spectrum, fd, and the average cycle

frequency, fc: Under transport conditions (cf. Fig. 10d), a clear dominant frequency is lacking
and the frequency corresponding to the maximum amplitude in the power spectrum is given
instead of fd (®lled symbols in Fig. 15b). All cases show a signi®cant di�erence between fd and
fc, indicating a deviation from periodicity, and fd and fc depend di�erently on gas velocity.
Whereas fd remains almost independent of velocity, fc increases with velocity, indicating an
increased complexity of the ¯ow which leads to a shortened time-scale. Under transport
conditions the maximum amplitude of the spectra yields no valuable information, since the
location of the `dominant' frequency in the wide Region 1 is not well-de®ned (Fig. 10d).
The change in fall-o� of Region 2 in power spectrum with velocity is given in Fig. 15c. The

fall-o� is not constant but changes continuously with velocity in the three regimes shown. The
fall-o� under transport conditions is similar to that of the pressure ®eld of gas-¯ow turbulence
�a � 7=312:33). When the ¯ow is dilute, we can expect the gas-particle dynamics to be nearer
turbulent gas-phase ¯ow than under the denser conditions studied which, perhaps, explains the
fall-o� to be near the 7/3 fall-o� of single phase ¯ow. At low velocities, in the single bubble
regime, the two phases are sharply separated in space-domain and Region 1 of the spectrum is
directly linked to the macro-structure of the ¯ow. Therefore, we may assume the fall-o� in
Regions 2 and 3 to correspond to gas-phase ¯uctuations, which are more or less in¯uenced by
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Fig. 15. Summary of the results of the time-series analysis applied on the time series of pressure ¯uctuations for the
di�erent velocities investigated in the CFB-unit: (a) standard deviation �s), (b) dominant or maximum frequency in
power spectrum �fd� and average cycle frequency �fc), (c) fall-o� in power spectra (cf. Figs. 11 and 12), (d)

correlation dimension �DML� and Kolmogorov entropy �KML� in bits/cycle, and (e) Kolmogorov entropy in bits/s
and wideband energy �EWB).
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the presence of particles. At intermediate velocities the fall-o� passes a maximum as the
velocity is increased. This may be interpreted as the existence of a strong interaction between
the two phases at time scales corresponding to Region 2 in the power spectrum. The
interaction gets stronger at higher velocities, but for more dilute suspensions the in¯uence of
the dense phase on the measured pressure ¯uctuations becomes smaller and this could result in
a maximum in fall-o�.
Region 3 gives a power-law decay in all cases studied. The decay constant, a, of Region 3 is

incorporated in Fig. 15c. Except for the lowest and highest velocities, the fall-o� in Region 3 is
fairly constant with a power-law decay of around 4. At the lowest velocities, the energy in
Region 3 is very low and an interaction with the measurement-tube may exist. Considering
estimates of the particle relaxation time (Peirano et al., 1998), it may be assumed that the time
scales of Region 3 �f > 20 Hzc t < 50 ms) correspond to gas-¯ow ¯uctuations. A similar fall-
o� �a � 5� was observed by LoÈ fdahl et al. (1996) in spectra of pressure ¯uctuations of gas-¯ow
turbulence in a turbulent wall-layer measured by a small silicon pressure transducer, however,
at considerably smaller time scales.
The maximum likelihood estimation of the correlation dimension, DML, is a measure of the

complexity of the attractor in state-space. DML is given in Fig. 15d: the higher the velocity, the
more complex is the attractor with DML ranging from 2.55 to 7. The low-velocity cases of the
single bubble regime yield DML-values below 5. In this regime, there is a continuous increase in
DML with an increase in velocity indicating an increased complexity of the ¯ow. Within the
exploding bubble regime the dimension remains fairly constant �DML15:5� with an increase in
velocity. Under transport conditions DML changes from about 6 to 7 in the velocity range
studied.
Calculated values of DML should be compared with the results of a non-linearity test, since

stochastic systems with power-law spectra have also shown to produce ®nite values of the
correlation dimension. We have already shown that the measured time series exhibits a strong
intermittency with an increase in ¯atness, F, at high frequencies, indicating a non-stochastic
behavior. In Section 4.1, the data from the single bubble regime were shown to be non-linear
(Table 2), whereas the data from the other regimes could not be distinguished from a linear

Fig. 16. Bottom bed voidage, e, and bottom bed height, Hx, at di�erent velocities.
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stochastic system. Fig. 17 summarizes the calculated values of the correlation dimension, DML,
and the outcomes of the non-linearity test �Zavg� for all cases studied. Zavg is not a measure of
non-linearity but expresses the statistical level of signi®cance at which the hypothesis of non-
linearity can be approved or rejected. The strong correlation between DML and Zavg in Fig. 17
may be expected. Systems with a high dimension, having many modes, are di�cult to
distinguish from stochastic systems, having an in®nite number of modes. In agreement with the
previous section, all ¯uidized bed data are in-between the Lorenz model and the turbulent
pipe-¯ow measurements, and the correlation dimension is related to the macro-structure of the
¯ow; the more complex the ¯ow-picture is, the higher the dimension becomes. Thus, the
multiple bubble regime and the velocities corresponding to transport conditions have high
dimensions and Zavg > ÿ3 and non-linearity cannot be claimed. However, as shown in the
previous section, ¯atness grows with ®lter-frequency for all time series. This would not be the
case if the data were completely stochastic (having power-law spectra). Fig. 17 shows that
when the correlation dimension exceeds 5.5, non-linearity cannot be claimed for the data
investigated.

Fig. 17. Correlation dimension �DML� plotted in relation to the outcome of the non-linearity test �Zavg), Zavg express
the satistical level of signi®cance at which the hypothesis of non-linearity can be approved or rejected. It is not a
measure of non-linearity.
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The Kolmogorov entropy, KML (bits/cycle), in Fig. 15d di�ers from Section 4.1, where the
entropy was fairly similar for the four regimes. Indeed, KML is similar for the exploding bubble
regime and under transport conditions, but an increase in gas velocity in the single bubble
regime results in a signi®cant decrease in KML down to a minimum of KML � 2:3 bits/cycle. The
visual (video) observations con®rmed that an increase in velocity in this regime results in larger
bubbles which, at the velocity of the lowest KML value, almost ®ll out the entire cross-section
of the bed, and the bubbles are clear-cut and symmetric. Furthermore, with an increase in
velocity the average cycle frequency becomes lower (Fig. 15b) and the power spectrum more
narrow (Fig. 15e). A further increase in velocity breaks up the single bubble structure and the
more complex exploding bubble regime is entered. Fig. 15e incorporates KML expressed in
bits/s showing a similar dependence on velocity as obtained in Fig. 15d, but with di�erences
such as a lower decrease with velocity in the single bubble regime.
The observations made in this section give rise to several questions. Are there any general

di�erences between the non-linear time series and those which cannot be proved to be non-
linear, i.e., between those for which DML < 5:5 and those for which DML > 5:5 according to
Fig. 17? Can the state-space analysis be divided between macro-structures and ®ner structures
of the ¯ow? Or, more speci®cally, is it possible to link the di�erence between the regions in the
power spectrum to the non-linear analysis? Is it possible to use fc as demarcation between the
macro-structure and the ®ner structures in the frequency domain (between Regions 1 and 2 in
power spectrum)? The next section addresses these questions.

4.4. Comparison of frequency domain and state-space analysis

The dominant frequency (if present) in a power spectrum of the pressure ¯uctuations, yields
information related to the bubble motion (see Sun et al., 1994 and references therein). Because
of the complexity of the ¯ow, and having the intermittency at frequencies above the dominant
frequency in mind, it is more interesting to look at the distribution of frequencies in the power
spectrum than to go beyond only the dominant frequency and to compare the amount of
energy in Regions 1±3 of the power spectrum with the values of KML, DML and fc: Except for
the single bubble regime, an increase in gas velocity results in a wider power spectrum with
energy transferred from Region 1, mainly to Region 2 but also to Region 3. In the single
bubble regime, we noted a decrease in KML together with a narrowing of the power spectrum
(not shown in plots) with an increase in gas velocity.
Utilizing Parsevals theorem (Eq. (13)), the change in energy outside Region 1 as a

consequence of a change in operational condition/regime can be determined. The frequencies
limiting Region 1 can be chosen as 0.5 and 2 Hz, i.e., only the macro-structure of the ¯ow
induced by the bubble motion is included in Region 1. For spectra with a clear peak, only a
small amount of energies are found at frequencies below 0.5 Hz. Spectra measured under
transport conditions have a more or less continuous decline in energy in Region 1 (Fig. 12b),
and in this case the limit was extended to the lowest frequency in the spectrum, Df: The energy
in Regions 2 and 3 can be expressed in relation to the total energy of the power spectrum and
is called the wide band energy, EWB,
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EWB �

24 X0:5 Hz

f�Df
Pxx�f� �

XfN
f�2 Hz

Pxx�f�
35

XfN
f�Df

Pxx�f�
: �23�

Applying 4 Hz instead of 2 Hz as demarcation between Regions 1 and 2 did not signi®cantly
a�ect the result. EWB is included in Fig. 15e, where a strong correlation is seen between EWB

and KML expressed in bits/s, also illustrated in Fig. 18. There is a substantial increase in EWB

with increased velocity in the exploding bubble regime and a decrease in EWB, as a
consequence of the narrowing of the power spectrum, in the single bubble regime and under
transport conditions. From the increase in EWB and KML with velocity in the exploding bubble
regime, it can be concluded that, in spite of the major frequency remaining almost constant,
there is a substantial increase in the ®ner structures of the ¯ow. Fig. 18 also includes the
multiple bubble regime which has a wide spectrum due to the many bubbles present in the bed.
The major contribution to the change in EWB is from frequency ranges which have a strong

intermittent structure. Since intermittency is a characteristic of non-linear systems, as discussed
by Frisch and Morf (1981), Manneville (1981), Greenside et al. (1982) and Provenzale et al.
(1993), a relation between the amount of energy in the intermittent frequency range and the
degree of predictability of the time series (as quanti®ed by the Kolmogorov entropy) is
expected (Fig. 18).
Before we investigate the relation between EWB and KML in bits/cycle and between EWB and

DML, we recall the di�erences between the values of KML in bits/cycle and KML in bits/s (Fig.
15d,e and Table 2). Such a di�erence is expected. The loss of information during an average

Fig. 18. Kolmogorov entropy �KML� in bits/s vs. the wide band energy �EWB).
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cycle �1=fc), KML (bits/cycle), is not likely to vary in the same manner as the loss of
information related to the absolute time scale, KML (bits/s), since there are strong di�erences
between the average cycle frequencies, fc, of the regimes (Fig. 15b). Frequencies above fc are
within Region 2, and fc could be seen as a frequency dividing the macro-structure from the
®ner structures of the time series in state-space.
Fig. 19 relates KML in bits/s to the average cycle frequency. The ®gure shows that when

DML > 5:5, i.e., in cases which could not be distinguished from linear stochastic systems, KML,
if expressed in bits/cycle, varies little with cycle frequency; a least square ®t to the data for
DML > 5:5 gives KML � 5:61 bits/cycle. On the other hand, the data which were proven to be
non-linear show strong variations in KML per cycle, as also seen in the single bubble regime in
Fig. 15d. This result supports the following interpretation of the relation between Kolmogorov
entropy in bits/cycle and the wide band energy, EWB, shown in Fig. 20, which is di�erent from
the corresponding relation for KML expressed in bits/s of Fig. 18. Thus, when DML < 5:5 there
is an increase in entropy, both per average cycle and per time unit as the energy is transferred
from the macro-structure of Region 1 to the ®ne structures of Regions 2 and 3. When

Fig. 19. Kolmogorov entropy �KML� in bits/s vs. average cycle frequency �fc). The frequency scale is arbitrarily
chosen (same as in Fig. 16a) for the Lorenz equations.
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DML > 5:5, which occurs when EWB exceeds 20% of the energy of the time series (Fig. 20), an
increase in the amount of energy in the ®ner structures, EWB, does not in¯uence KML per cycle,
whereas there is a proportional increase in KML when related to the time unit. For DML > 5:5,
the increase in KML (bits/s) with an increase in EWB is then entirely due to an increase in the
average cycle frequency, which, as can be seen from Fig. 15b, occurs within Region 2 of the
power spectrum (with 2 Hz as demarcation between Regions 1 and 2 as in Eq. (23)). For
DML < 5:5, on the other hand, the increase in KML per second with an increase in EWB is both
due to an increased complexity of the macro-structure of the ¯ow (increase in fc when fc is
within Region 1, Fig. 15b) and due to an increase in KML along an average cycle on the
attractor. The latter increase comes from a larger contribution from ®ne structures at
frequencies exceeding fc (within Regions 2 and 3). Fig. 21 gives that in the time series
characterized by DML > 5:5, 20% or more of the energy of the signal appears as frequencies
from Regions 2 and 3 of power spectra �fc > 2 Hz). In the cases without a clear peak in the
power spectrum, when no bottom bed exists, EWB was calculated with Df < f < 0:5 Hz, 2 Hz <
f < fN and with 2 Hz < f < fN, and no principal di�erence was obtained (except the shift in
EWB to lower energies for the latter case) as seen from Fig. 20. EWB according to Eq. (23) was,
therefore, used in all cases.
Figs. 20 and 21 indicate that the average cycle frequency cannot be used as a division

between macro and ®ner structures of the time series in the frequency domain. On the one
hand, this could be expected, since there is no theoretical relation between the analyses in
frequency domain �EWB� and in state-space �KML), and the results from these methods have to
be interpreted independently of each other. On the other hand, the strong correlation between
KML and EWB (Figs. 18 and 20) indicates a correct interpretation of the outcomes of the two
methods in terms of the relation between macro and ®ner structures. Fig. 22 con®rms that the
use of fc as demarcation between Regions 1 and 2 in the power spectrum yields no correlation
between KML and EWB (cf. Fig. 20).

Fig. 20. Kolmogorov entropy �KML� in bits/cycle vs. the vide band energy �EWB� for ¯uidized bed data.
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The strong correlation between the wide band energy, EWB, and the Kolmogorov entropy,
KML, which occurs at DML lower than 5.5, illustrates that a change in width of the power
spectrum can be directly linked to a change in predictability of the signal on time scales which
are shorter than the average cycle time �1=fc). For DML greater than 5.5, the state-space
analysis treats ¯uctuations on time scales shorter than the average cycle time as noise, i.e., KML

in bits/cycle does not respond to changes in amount of energy at frequencies outside Region 1.

Fig. 21. Average cycle frequency �fc� vs. wide band energy �EWB� for the ¯uidized bed data.

Fig. 22. Kolmogorov entropy �KML� in bits/cycle vs. the wide band energy �EWB� with fc as demarcation between
Regions 1 and 2 in power spectra of the ¯uidized bed data.

F. Johnsson et al. / International Journal of Multiphase Flow 26 (2000) 663±715706



In the latter case �Zavg > ÿ3, DML > 5:5), fc corresponds to frequencies within Region 2, and

there is a linear correlation between fc and EWB as shown in Fig. 21. When non-linearity can

be proven, i.e., Zavg < ÿ3 and DML < 5:5, the average cycle frequency is within Region 1 in the

spectrum �fc < 2 Hz), Fig. 21.

The dimension of an attractor is not expected to be a direct function of the time scale of the

system, and this is con®rmed by Fig. 23 for Zavg33 �DML vs. EWB yield a similar plot due to

the relation between fc and EWB given in Fig. 21). As shown in Figs. 18, 20±22, the cases for

which DML > 5:5 and Zavg > ÿ3 (Fig. 17), span over a wide range of total amount of energy in

Regions 2 and 3 in the power spectrum. Within this span there are rather small variations in

DML which, as in the case of the KML values, indicates that the state-space analysis does not

respond to changes in amount of energy at frequencies outside Region 1 when EWB > 20%:
Instead, the energy in these two regions is seen as noise.

Although there is a certain resemblance between the fall-o� of the power spectrum (Fig. 15c)

and the correlation dimension, DML, (Fig. 15d), the fall-o� cannot be used to distinguish

between non-linear time series �Zavg < ÿ3� and those which could not be distinguished from a

linear (stochastic) time series �Zavg > ÿ3), Fig. 17. Thus, the method of using the fall-o� in

power spectrum to distinguish between low-dimensional (chaotic) and high-dimensional

stochastic systems cannot be applied on the present ¯uidized bed data as was done on

experimental time series from other types of systems (Brandstater and Swinney, 1987;

Babloyantz and Destexhe, 1988; Philippou et al., 1991; el-Hamdi et al., 1993). As mentioned in

Section 1.1, the method was also used on ¯uidized bed data (Nowak et al., 1993; Ding and

Tam, 1994; Ding, 1997) with, according to our interpretation, results similar to those of the

present study, i.e., the results are less clear-cut than from the other systems. Also, the method

(cf. Section 1.1) of relating the exponential decay constant, m, in a power spectrum to the sum

of the positive Lyapunov exponents (i.e., to the Kolmogorov entropy), suggested and shown to

Fig. 23. Correlation dimension �DML� vs. average cycle frequency �fc� for the ¯uidized bed data.
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Table 3
Summary of the time-series analysis with respect to application and requirements for the study of ¯uidized bed hydrodynamics. The requirements
may vary from case to case, and the ®gures given are applicable to the cases of the present work

Method Criterion for regime identi®cation Data requirements number
of samples, sampling

frequency

Information which should
be provided with the

resultsa

Drawback(s)

Time
domain

(amplitude)

Identi®cation of transition velocities �uc

and uk� based on change in amplitude
1200, 20 Hz Vertical pressure-drop

pro®le
Indirect measure of dynamics

Frequency
domain

Change in frequency distribution > 16� 1024, 20 Hz (for
dominant range of

frequencies)

Number of spectra
averaged, vertical pressure-

drop pro®le

Interpretation of power
spectra somewhat subjective

State-space Change in KML and/or DML 65,5361100 times fc,
typically 100±600 Hzb

Vertical pressure-drop
pro®le

Still under development, no
standard software packages

available

a It is assumed that number of samples and sample frequency is given.
b See Vander Stappen (1996) for details.
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be approximately valid for modeled time series by Sigeti (1995b), was not applicable to the
measured data of this work.

4.5. User guideline

The complex nature of the two-phase ¯ow in ¯uidized beds with di�erent regimes and
applications makes it di�cult to establish a standard way for employing the analysis
methods discussed in this work. Table 3 gives a rough grading of the methods with
respect to regime identi®cation, amount of data needed for the analysis, what should be
given in connection to the results and possible drawbacks of the methods. Especially in
industrial applications, it is important to use as simple a method of analysis as possible.
Provided the amplitude (standard deviation) is used together with the pressure drop

distribution (to identify change in the vertical extension of the dense bottom zone), it
constitutes a simple method (cf. data requirements, Table 3) for a qualitative
interpretation of changes in the ¯ow regime. Important is to have a dense enough spacing
of the pressure taps in order to identify change in the vertical extension of the dense
bottom zone.
For the frequency domain analysis it is essential to average a su�cient number of

spectra to ensure a high statistical signi®cance. The results should always be accompanied
with information on number of spectra averaged, sample frequency and length (number of
samples) of each spectra. The sample frequency (and total number of samples) should be
adjusted to the range of frequencies of interest. Thus, if only the major (bubble)
frequencies are of interest (Region 1 of spectrum) a sampling frequency of 20 Hz would
be su�cient in most cases. From previous experience, and also applicable for the data
given in this work, is found that averaging at least 16 sub-spectra, each based on 1024
samples from 20 Hz sampling is su�cient. If, on the other hand, ®ner structures are of
interest (Regions 2 and 3), obviously a higher sampling frequency has to be employed,
but the total sampling time can be lowered. For interpretation of ®ner structures of the
dynamics, the response time of the measurement system (pressure transducer and pressure
tap) becomes of importance.
A possible advantage of the state-space analysis is that it may provide quantitative numbers

for a description of the dynamics. The analysis is still under development, however, and
commercially wide-spread software (for general purpose) lacks. A recent development (and
necessary component in the analysis) is the non-linearity test described in Section 3.3. Vander
Stappen (1996) recommends at least 65,536 samples to be taken at 100 points per cycle
�100� fc), typically yielding 150±600 Hz sampling frequency for the conditions of the present
work. Vander Stappen gives a more detailed investigation on the accuracy of the state-space
analysis with respect to number of samples and sample frequency.

5. Conclusions

Fluidization regimes are characterized by the major ¯uctuations of the ¯ow, the macro-¯ow,
which are linked to the visual appearance of the ¯ow. There is a growing interest to analyze
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the ®ner structures of the gas and solids ¯ow. This calls for a description of the ¯ow, which
includes frequencies above those which are normally used for the de®nition of the ¯uidization
regime. The present analysis, employing linear (time and frequency domain) and non-linear
(state-space) time-series analysis of pressure ¯uctuations, emphasizes that the ®ner structures of
the ¯ow are important for a deeper understanding of two-phase ¯ow dynamics.

5.1. Characterization of the ¯ow regimes

For a description of the dynamics of the ¯ow based on experiments, time-series analysis has
to be used together with time-averaged values of the vertical distribution of solids. In the case
of a dense bottom bed (under non-circulating as well as circulating conditions), the average
voidage and height of the bottom bed strongly in¯uence the amplitude of the ¯uctuations, but
not necessarily the dynamics (time scale) of the ¯uctuations (Fig. 15). On the other hand, there
are cases with pronounced di�erences in dynamics, which are not seen in the time-averaged
quantities (Fig. 6 and Table 1).
The amplitude of pressure ¯uctuations (Table 1 and Fig. 15a), which is commonly used in

regime studies, gives no direct information on the dynamics of the ¯ow. A change in amplitude
can be caused by a redistribution of solids in the ¯uidization system without any signi®cant
change in the dynamics of the ¯ow. However, used together with the time-averaged vertical
distribution of solids, the amplitude may still constitute a simple tool for regime
characterization.
From the frequency domain analysis three characteristic regions were identi®ed in the power

spectrum of the measured in-bed pressure signals (Fig. 11Fig. 12):

Region 1. A region corresponding to the macro-structure of the ¯ow in which the dominant
frequencies are present. The distribution and amount of energy in this region di�er
signi®cantly between the ¯uidization regimes studied. The region ranges typically up to
about 4 Hz and is best presented on a linear scale as in Fig. 10.
Region 2. A region from about 4 to 10 Hz with a fall-o� in frequency, which can be ®tted
either as a power-law or as an exponential fall-o�. The fall-o� is approximately in the same
range �a � 1:9±2:9� for the four regimes (Table 2) and is governed by ®ner structures of the
¯ow.
Region 3. A region from about 20 to 200 Hz (the Nyquist frequency) with a power-law fall-
o� of a � 4:0±5:4: This is a region with no clear dependence on the ¯uidization regime.

High-pass ®ltering revealed a pronounced intermittency in all cases studied, especially at high
frequencies corresponding to Region 3 with a > 3 (cf. Davis et al., 1994). The ¯uidized bed
time series, which were proven non-linear with the highest statistical signi®cance (single bubble
regime), had the strongest intermittency (Figs. 13 and 14). With an increase in velocity within
one regime, the dominant frequency (Fig. 15b), but also the distribution of energy in Region 1
of the power spectrum (Fig. 10), may appear to be independent of velocity in spite of a
signi®cant shift of energy up into the intermittent Regions 2 and 3 (Fig. 15e).
The presence of intermittency and the shape of the power spectra in Regions 2 and 3,

together with the high Reynolds numbers obtained for the gas-phase ¯ow (based on the bubble
diameter, Table 1), makes the measured dynamics resemble that of gas-phase turbulence. Since
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pressure was measured, the gas and solids phases cannot be separated and further studies are
needed in order to investigate the origin and nature of the ¯uctuations in both phases.

5.2. Comparison of analysis in frequency domain and in state-space

Interpretation of the results in frequency domain and in state-space can be used
complementary to each other. A key in the comparison is the non-linearity test which, for the
system studied, shows that non-linearity cannot be proven when the correlation dimension,
DML, exceeds 5.5 (Fig. 17). When DML < 5:5, non-linearity was proven, and there is a
proportionality between the information loss in state-space, KML, and the amount of energy,
EWB, in Regions 2 and 3. Higher the EWB higher the KML, and the lower is the predictability
(Figs. 18 and 20). When DML > 5:5, KML is about 5.6 bits/cycle and is independent of cycle
frequency and of EWB (Figs. 19 and 20). The latter occurred for EWB > 20% of the total
amount of energy. In these cases, there are also only small changes in DML (Figs. 21 and 23)
and the cycle frequencies, fc, are outside of Region 1 of the power spectrum, fc > 2 Hz. When
an increase in complexity of the time series occurs at frequencies which are within Regions 2
and 3, the increase is not re¯ected in the state- space analysis, since DML > 5:5: In these cases
�fc > 2 Hz), fc is proportional to EWB (Fig. 21).
As a consequence, the state-space analysis is most appropriate in low-dimensional cases,

when DML < 5:5: Otherwise, when DML > 5:5, the state-space analysis interprets the time series
as if they were reconstructed from a system of many modes, and substantial changes in the
energy distribution with respect to time-scale are not re¯ected in the analysis. However, KML

expressed in bits/s will still give a qualitative response to changes in the time scale distribution
(Fig. 18). It is not known if the major contribution to the lack of sensitivity in the state-space
analysis, for DML > 5:5, is due to a high noise level �EWB > 20%� or to the fact that the actual
number of modes is large.
The relation between the intermittency and the outcome of the non-linearity test should be

further investigated. Of special interest is to include other simulated deterministic time series,
such as the Lorenz-4D system. Filtering of the time series prior to the state-space analysis may
also yield information on the in¯uence of the noise �EWB� on the outcome of the analysis.
The ¯uidized bed time series treated in this work (the four cases of Table 1) are available

from http://www.entek.chalmers.se/0®jo and results from analysis of them may be published,
provided the source is given.
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